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a b s t r a c t

We consider the convex composite problem of minimizing the sum of a strongly convex function and a
general extended valued convex function. We present a dual-based proximal gradient scheme for solv-
ing this problem. We show that although the rate of convergence of the dual objective function sequence
converges to the optimal value with the rate O(1/k2), the rate of convergence of the primal sequence is
of the order O(1/k).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we focus on the nonasymptotic global rate of con-
vergence and efficiency of a dual based proximal gradient method
forminimizing the composite problemwhich consists of the sumof
two nonsmooth convex functions, with one assumed to be strongly
convex. This problem is rich enough to model many applications
from diverse areas, and this will be discussed in the next section.

The literature covering both the theory and algorithms rely-
ing on the proximal technology was already vast over the last few
decades and has led to fundamental algorithms, such as proximal
minimization, augmented Lagrangians, splitting methods for the
sum of operators, alternating direction of multipliers, and varia-
tional inequalities; see e.g., [5,11,16,18,12] for a few earlier rep-
resentative works. Nowadays, the volume of research works in a
wide array of new engineering applications have clearly intensi-
fied a renewed interest in proximal-based methods; see e.g., [6,9]
which include several of these new applications and a comprehen-
sive list of references.

This paper is another manifestation of the alluded current
trends. Our method is a blend of old ideas combined with a very
recent algorithm, demonstrating the power of Moreau proximal
theory [13]when applied to optimization problemswith particular
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structures and specific information on the problem’s data. Exploit-
ing data information, here the strong convexity of one function, we
devise a novel algorithm which combines duality with the recent
fast proximal gradient scheme, popularized under the name FISTA,
that we recently introduced in [4]. The resulting method we ob-
tain is called fast dual proximal gradient (FDPG). The idea of tack-
ling the dual problem is not new andwas developed by Tseng [20],
who derived what he called the alternating minimization method,
and which was obtained as a dual application of an algorithm in-
troduced earlier by Gabay [11] for finding the zero of the sum of
twomaximal monotone operators, with one being strongly mono-
tone. Here, by applying FISTA on the dual problem, andwith essen-
tially no extra computational cost,wederive the newmethod FDPG
which is proven to enjoy faster global convergence rates properties
than both the alternating minimization scheme as well as the clas-
sical subgradient projection algorithm when applied to the primal
nonsmooth strongly convex problem, and for which we establish
an improved rate of convergence over the well known O(1/

√
k)

rate. Furthermore, as a by-product of our analysis, we can easily
derive new global rate of convergence results for both the classical
alternating minimization method, and the so-called dual gradient
method of Uzawa [21].
Outline. Our analysis and results are developed in Sections 3 and 4,
after presenting in Section 2 the optimization model we propose
to study together with some interesting motivating examples. Our
notations are quite standard and can be found in any convex anal-
ysis text.
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2. The optimization model and examples

Consider the optimization problem
(P) min f (x) + g(Ax)
where f : E → (−∞, +∞] is a proper, closed and strongly convex
extended real-valued function with strong convexity parameter
σ > 0 and g : V → (−∞, +∞] is a proper, closed and convex
extended real-valued function. The operator A : E → V is a linear
operator. The spacesE, V are Euclidean spaceswith inner products
⟨·, ·⟩E, ⟨·, ·⟩V and norms ∥ · ∥E, ∥ · ∥V. The indices will usually
be omitted since the identity of the relevant space will be clear
from the context. Under the properties of f and g just mentioned,
problem (P) has a unique optimal solution denoted by x∗.

Problem (P) is quite general and can model many applications
from diverse areas. Following are three representatives of these
applications.

Example 2.1 (Denoising). In the denoising problem we are given
a signal d ∈ E which is contaminated by noise and we seek to
find another vector x ∈ E, which on the one hand is close to d
in the sense that the squared norm ∥x − d∥

2 is small, and on the
other hand, yields a small regularization term R(Lx), where L is a
linear transformation which in many applications accounts for the
so-called ‘‘smoothness’’ of the signal and R : V → R+ is a given
convex function that measures themagnitude of its argument. The
denoising problem is then defined to be

min
x∈E

∥x − d∥
2
+ λR(Lx), (2.1)

whereλ > 0 is a regularization parameter. It can be seen that prob-
lem (2.1) fits into the general model (P) by taking f (x) = ∥x−d∥

2,
g(z) = λR(z) and A = L.

Example 2.2 (Projection Onto the Intersection of Convex Sets).Given
m closed and convex sets C1, C2, . . . , Cm ⊆ E with a nonempty in-
tersection, and a point d ∈ E, the objective is to find the orthogonal
projection ofd onto the intersection of the sets, that is, the problem
we consider here is

min
x

{∥x − d∥
2

: x ∈ ∩
m
i=1Ci}, (2.2)

which ismodel (P) with f (x) = ∥x−d∥
2 and g : Em

→ R (i.e.,V =

Em) defined by g(z1, . . . , zm) =
m

i=1 δCi(zi) (δC (·) being the indi-
cator function of the set C). The linear operator A : E → Em is
defined by A(x) = (x, x, . . . , x)  

m blocks

.

Example 2.3 (Resource Allocation Problems). In many resource al-
location problems we are given one-dimensional concave utility
functions uj(xj) defined over a certain interval [mi,Mi]. A general
model of the resource allocation problem is then

max
n

j=1

uj(xj)

s.t. Ax ≤ b,
xj ∈ Ij ≡ [mj,Mj], j = 1, 2, . . . , n,

(2.3)

where A ∈ Rm×n and b ∈ Rm. We will further assume that the
one-dimensional functions uj, j = 1, 2, . . . , n, are all strongly con-
cave over Ij. Problem (2.3) can be cast as model (P) with f (x) =

−
n

j=1 uj(xj) when xj ∈ Ij, j = 1, 2, . . . , n, and f (x) = ∞ other-
wise, A(x) = Ax, and with g defined as g(z) = δ(−∞,b](z).

3. A fast dual-based proximal gradient method

As explained in the introduction, our method is dual based and
exploits the data information. We first present the dual problem

and its properties.We then derive the promised algorithm in terms
of the problems’ data f , g, A.

3.1. The dual problem and its properties

Problem (P) can also be written in the following constrained
form:
(P′) min{f (x) + g(z) : Ax − z = 0}.
Associating a Lagrange dual variables vector y ∈ V to the set of
equality constraints in (P′), we can construct the Lagrangian of the
problem
L(x, z, y) = f (x) + g(z) − ⟨y, Ax − z⟩

= f (x) + g(z) − ⟨ATy, x⟩ + ⟨y, z⟩. (3.1)
Minimizing the Lagrangian with respect to x and z we obtain that
the dual problem is

(D) max
y

{q(y) ≡ −f ∗(ATy) − g∗(−y)}, (3.2)

where f ∗ and g∗ are the conjugates of f and g respectively:
f ∗(y) = max

x
{⟨y, x⟩ − f (x)} , g∗(y) = max

x
{⟨y, x⟩ − g(x)} .

We know by the strong duality theorem for convex problems (see
e.g., [17]) that if there exists x ∈ ri(dom f ), z ∈ ri(dom g) such
that Ax = z, then strong duality holds, meaning that
val(D) = val(P),
and the optimal solution of the dual problem is attained. The strong
convexity of f implies a Lipschitz gradient property of the function
f ∗(ATx)—a property that will be critical to our analysis. The Lip-
schitz constant of the gradient of f ∗(ATx) can be easily computed
using a well known lemma connecting the strong convexity pa-
rameter of a convex function and the Lipschitz constant of the gra-
dient of its conjugate [19, Proposition 12.60, p. 565].

Lemma 3.1. The function F(y) ≡ f ∗(ATy) is continuously differen-
tiable and has a Lipschitz continuous gradient with constant ∥A∥

2

σ
.

Proof. By Proposition 12.60 from [19] it follows that f ∗ is contin-
uously differentiable with a Lipschitz gradient with constant 1

σ
.

Therefore, for any x, y ∈ E:

∥∇F(x) − ∇F(y)∥ = ∥A∇f ∗(ATx) − A∇f ∗(ATy)∥

≤
1
σ

∥A∥ · ∥ATx − ATy∥

≤
∥A∥ · ∥AT

∥

σ
∥x − y∥ =

∥A∥
2

σ
∥x − y∥. �

We have established that the dual problem can be written as
(for convenience, we consider here the equivalent minimization
problem):
(D′) min F(y) + G(y),
where

F(y) := f ∗(ATy), G(y) := g∗(−y). (3.3)
By Lemma 3.1 it follows that ∇F is Lipschitz continuous with
constant ∥A∥

2

σ
. Thus, problem (D′) consists of minimizing the sum

of a smooth function F with a closed proper function G. This paves
the way to apply first order proximal gradient methods on (D′)
which precisely address problems of such form. This is developed
in the next section where we also introduce our main scheme: a
fast dual based proximal gradient.

3.2. The fast dual proximal gradient algorithm

We begin by recalling that the Moreau proximal map [13] of
a proper closed and convex function h : E → (−∞, ∞] is
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