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a b s t r a c t

We consider a consumer of a resource, such as electricity, who must pay a per unit charge to procure the
resource, as well as a peak demand charge. We will assume that this consumer has some ability to self-
generate and present an efficient linear programming formulation for the demand response of such a con-
sumer. We will establish a monotonicity result that indicates fuel supply of S, utilized for self-generation,
may be spent in successive steps adding to S.

© 2014 Published by Elsevier B.V.

1. Introduction

We consider a model in which a consumer of a resource over
several periods must pay a per unit charge for the resource as well
as a peak usage charge. The consumer has the ability to reduce con-
sumption in any period at some given cost, subject to a constraint
on the total amount of reduction possible. The consumer’s problem
is to decide inwhat periods to reduce consumption tominimize the
total cost of procuring the resource.

Such amodel could arise in several settings.We have inmind an
industrial or commercial consumer of electricity who uses a vary-
ing amount of electricity over some time horizon of T periods, for
which he or she incurs an energy charge (per megawatt-hour con-
sumed) and a peak usage charge for the total megawatt-hours con-
sumed in the highest k periods. The peak usage charge is otherwise
known as a demand charge. The consumer has some onsite local
generation that can be used to offset the purchases of electricity in
any period. Such a charging regime is called anytime peak pricing or
‘‘Hopkinson rate’’ after the engineer who first proposed it in 1892
(see [3]).

A much simplified version of our problem was addressed in
the late 1970s and early 1980s, before the prevalence of electricity
markets, in the context of public utility pricing and rationing when
demand exceeds the available supply (see for instance [1,5,4]).
In this context, the authors attempt to deal with the details of ra-
tioning by assuming aggregate infinitesimal consumers thatwould
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provide a simple elastic demand curve with no constraints. This
is a large point of difference from the setting that we face, where
our consumer, possibly due tomanufacturing constraints, is inflex-
ible with respect to consumption of electricity. Furthermore, the
above authors do not study properties (such as monotonicity) of
their models.

Anytime peak pricing can be contrasted with coincident peak
pricing (and its relation ‘‘time-of-use’’ pricing)which imposes a de-
mand charge in periodswhen the system experiences peak demand
(as modeled in [6] for example). The Hopkinson rate was originally
intended to charge for electricity when it was primarily used for
lighting, and so any user’s peak demand typically coincided with
the system peak.When these are different, it is not hard to see that
coincident peak charging provides a clearer incentive to reduce the
system costs incurred by increases in capacity. Notwithstanding
this, anytime peak pricing does provide benefits from peak reduc-
tion (see e.g. [7]). It is also worth mentioning that for geographi-
cally isolated customers, coincident peak reduces to theHopkinson
rate.

Although the problem for a consumer facing an anytime peak
charge is more straightforward than tackling the coincident peak
problem, it is not trivial. The peak charge will typically be made on
the total consumption over several periods, typically those k peri-
ods with the largest consumption over some predetermined hori-
zon. In this paperwe showhow these periods can bedetermined by
a linear programming problem, to give an overall problem of mini-
mizing cost that is also a linear program. This linear program is then
shown to satisfy a monotonicity property that makes it amenable
to solution by a greedy algorithm. This provides some insights into
how to attack the problem with random data.
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Although our problemmight have applications in other settings
wewill couch it in the setting of electricity procurement. Neverthe-
less the analysis we develop is quite general.

The paper is laid out as follows. In the next sectionwe formulate
the optimization problemwewill study, and show that it simplifies
to a linear program. In Section 3 we show that this linear program
has a specific structure that enables its solution by a greedy algo-
rithm. The algorithm is outlined in Section 4; details can be found
in [2].

2. The anytime peak demand problem

We start by defining the parameters and the variables of the
problem. Throughout, we measure electricity in terms of the units
of the fuel needed to produce it.

Parameters

T = set of periods.
dt = demand in period t .
pt = spot price in period t .
ct = cost of generating one unit of electricity using fuel in
period t .
at = safe operating capacity of the generator in period t .
For the sake of simplicity, we make the assumption that
at ≤ dt (avoiding the case of ‘‘selling back to the grid’’).
S = total fuel supply.
P = the peak demand charge.
k = the number of periods to which the maximum demand
charge applies.

Variables

st = amount of fuel to allocate to generation in period t .
M = sum of the largest k load realizations.

The consumer’s problem over a time horizon T is to minimize
the total cost of electricity consumed, plus the peak charges that
are incurred on the top k periods, while meeting every period’s de-
mand and employing a limited amount of self-generation.Without
loss of generality we assume that |T | ≥ k. This problem can be for-
mulated as:

[AP] : min PM +


t∈T

(ct − pt)st

s.t.

t∈T

st ≤ S

st ≤ at t ∈ T
t∈τ

(dt − st) ≤ M for all τ ⊆ T , |τ | ≤ k.

Note that there is no loss in generality in assuming that P = 1
(by scaling the objective function of [AP]), so we normalize the
peak demand charge, i.e., set P = 1, simply to make the presen-
tation clearer.

Observe that in [AP] all subsets of T of size k or less must be
included which gives an exponentially growing set of constraints.
The problem [AP] can be formulated more concisely using the fol-
lowing observation.

Given any feasible solution st , t ∈ T , for [AP], the cost of max-
imum demandM is the optimal value of

[MDP] : max

t∈T

λt (dt − st)

s.t.

t∈T

λt = k, [h]

λt ≤ 1 t ∈ T [yt ]
λt ≥ 0 t ∈ T .

Taking the dual of MDP gives

[MDD] : min kh +


t∈T

yt

s.t.h + yt ≥ (dt − st) t ∈ T [λt ]

yt ≥ 0 t ∈ T

which has the same optimal value M . Here M is the sum of the
residual demands dt − st over the k highest periods, which incurs
penalty 1. Henceforth we write ∀t instead of t ∈ T for short.

If [MDP] and [MDD] havemultiple optimal solutionswe need to
focus on particular optimal solutions. Let us define g(k) to be the
kth largest value of dt −st for t ∈ T . Wewill then construct a set of
periods that constitute the top k periods (in terms of dt − st ), by re-
solving some ties. DefineN = {t|dt−st > g(k)}. Now consider the
set {t|dt − st = g(k)}, order this set by t , and select the elements of
O to be the first k−|N | periods in this (ordered) set.Wewill define
M = N ∪O. Note that |M| = k, sowehavedetermined awayof se-
lecting ‘‘the top k periods of residual demand’’ without ambiguity.
We refer toM as our canonicalmaximumdemand set. Note also that
M depends on the vector d − s.

Lemma 1. For a given vector d − s, optimal solutions to [MDD] and
[MDP] are given by

h∗
= g(k)

y∗

t = max(dt − st − h∗, 0) ∀t, and

λ∗

t =


P, if t ∈ M,

0, otherwise.

We refer to these solutions as the canonical solutions for resid-
ual demand d − s.

Proof. Observe that

y∗

t =


dt − st − h∗, if t ∈ M,

0, otherwise.

Thus the optimality conditions for [MDP] and [MDD],
t∈T

λt = k

0 ≤ λt ≤ 1 ∀t

h + yt ≥ dt − st ∀t

yt ≥ 0 ∀t

yt(1 − λt) = 0 ∀t

λt(h + yt + st − dt) = 0 ∀t,

are satisfied by the solution in the statement of the lemma. Hence
we have optimal solutions. �

It isworth noting that [MDD]will almost always have an infinite
number of solutions of which the canonical solution is only one. In
fact for any 0 ≤ α ≤ 1,

h∗(α) = αg(k)+ (1 − α)g(k + 1),

y∗

t (α) = max(dt − st − h∗(α), 0) ∀t, and

λ∗

t =


1, if t ∈ M,

0, otherwise,

will satisfy the optimality conditions of [MDP] and [MDD] and are
therefore optimal.

Following [MDP] and [MDD], we can formulate [AP] as a linear
programwithout having to consider an exponentially growing set
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