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1. Introduction

We consider finite and infinite horizon cases of the lost sales
variant of the classical stochastic inventory problem: At the start
of each period the inventory is reviewed to determine if it should
be replenished. If an order is placed, the cost consists of a fixed
ordering cost K, and a unit variable cost c. In each period demand
that cannot be filled is lost at a unit cost [; if demand is less than the
available inventory, the leftover stock is carried to the next period
at a unit holding cost h. The objective is to find the inventory policy
that minimizes the expected discounted cost. It is well known that
this cost is minimized by following an optimal (s, S) policy.

Under an (s, S) policy, the inventory position of a product is
reviewed regularly, and, if it is found to be below a threshold s an
order is placed to bring the inventory position up to the level S.
The choice of s and S is made to minimize the expected cost while
taking into account the fixed ordering cost, inventory holding cost,
and the cost associated with stockouts. The fundamental work on
(s, S) policiesis due to Arrow et al. [2] and Karlin [ 10]. However, the
optimality of such a policy, under general conditions, for the finite
horizon case with backorders was first established by Scarf [12]
using the novel properties of K-convexity. The application of
Scarf’s seminal result to the infinite horizon case with stationary
demand and cost parameters is due to Iglehart [9]. Subsequently,
Veinott [14] and Porteus [11] provided alternative proofs under
different conditions. Recently, Beyer and Sethi [6] added technical
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details missing in [9]. Analogous results on the structure of the
optimal policy for the lost sales case are due to Shreve [13]; many
details are also provided by Bertsekas [4] and Bensoussan et al. [3].

When it is appropriate to model demand as being discrete,
effective computation schemes are available for the infinite hori-
zon case with backorders. Of special interest are the efficient
algorithms due to Federgruen and Zipkin [7] and Zheng and Fed-
ergruen [16]; the latter essentially reduces the problem to that of
evaluating a single policy. Additional insights into such algorithms
are offered by Feng and Xiao [8]. While these papers develop algo-
rithms to find the optimal policy that minimizes average cost per
unit time for the backorder case when demand is discrete, we com-
pute the optimal policy for the complementary case that minimizes
the expected discounted cost for the lost sales case when demand
is continuous.

We begin our development in Section 2 by formulating the fi-
nite horizon version of the model and developing some new struc-
tural properties that are presented in Theorem 1 for the finite
horizon case and in Theorem 2 for the infinite horizon case.
While these properties hold without any distributional assump-
tion on demand, additional analysis, as presented in Theorem 3 of
Section 3, reveals that when demand is modeled as having an
Erlang distribution, the cost function has appealing special struc-
tures. These structures lead to a computational scheme for finding
the optimal policy for the infinite horizon problem with lost sales.

2. New structural properties

In the finite horizon model there are T periods with the last
period labeled as 1 and the first period labeled as T. The demand
in each period is described by a continuous random variable that
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is independently and identically distributed. In developing the
model, we will use the following notation:

Cost and model parameters

K = fixed setup cost, ¢ = unit variable cost, h = unit inventory holding cost
[ = unit lost sales cost (I > c), b = unit backorder cost

o = discount factor (0 < o < 1), T = time horizon

Demand information

& =random observation of demand in period t,t = 1,2,...,T

f(.) = probability density function (PDF) of demand in each period (we
assume f(x) > 0 forx > 0)

F(.) = cumulative distribution function (CDF) of demand in each period

Decision variables
s; = optimal reorder level in period t
S¢ = optimal order-up-to level in period t

Cost functions
L(.) = one period inventory holding and shortage penalty cost function
V¢ (x) = total minimal expected cost from period t onwards (t — 1, ..., 2,1,

given that the on-hand inventory at the beginning of period t is x
G (y) = total expected cost from period t onwards after inventory level is
increased to y
G(y|s, S) = total expected discounted cost for an infinite horizon problem with
stationary reorder point s and order-up-to level S after inventory
level is increased to y

Other useful functions

§(z) = 1 z> 0, the indicator function for ordering decisions
0 z=0

xt = max{x, 0}

Since the planning horizon consists of T periods, it is convenient
to include a mechanism to “settle accounts” at the end of the
planning horizon. Since all excess demand is lost, the state variable
x at time 0 must be non-negative. Specifically, we assume that
leftover inventory is sold at unit value w (w < c); if w is positive
the inventory is salvaged, and, if w is negative, disposal costs are
incurred. Hence, we can conclude that:

Vo(x) = —wx (x> 0). (1)

As in the classical treatment of the (s, S) inventory model, we
assume instantaneous delivery of orders, which makes it conve-
nient to define the one period cost, which is time independent be-
cause all parameters are stationary. Given that an order is placed
and received to bring the inventory level up to y, it is given by:

y +00
Ly)=h [ 5 — EF E)de +1 / & — PfE)dE. @)
0 y

And, given that an optimal policy is followed for the remaining pe-
riods, the expected discounted cost with y units of inventory after
ordering in period t is given by:

Gt(.y):Cy+L(Y)+aE[Vt—1(y_§t)+]v t:1721"'7T' (3)

Hence, G;(y) refers to the total expected cost from period t on-
wards, when the inventory level is increased to y. Thus,

Vi(x) = —cx + min{K§(y — x) + G, (y) : y > x}, (4)

represents the minimal total discounted cost from period t to
the last period when the initial on-hand inventory equals x. From
Shreve [13], we know that both G, (.) and V;(.) are K-convex; hence
there exist (s¢, S¢) which minimize V; (x): if the initial on-hand in-
ventory x < s, the retailer will order S; — x; if x > s;, no order is
placed.

In order to find an upper bound for reorder levels, we define

Yy
Go(y) = ¥ + L(y) — ac / 0 — £ (E)de, (5)
0

which can be interpreted as a single-period newsvendor model,
where all leftovers are fully refunded with purchase cost c. Since
Go(y) is strictly convex for y > 0, there exists a unique number
So (>0) at which Gg(.) attains its local minimum. As shown in

the following theorem, Sy provides an upper bound for 5, =

max{s;, S¢_1, ..., S1}, the maximum of reorder levels:
Theorem 1. In a T-period problem, for period t,t = 1,2, ..., T, we
have
(1.1) st = 59, Vt > 2;
(1.2) 3¢ < So;
(1.3) Gi(y) < 0,Vy € (0, 5:];
(]4) St > gt—‘l;
U
(1.5) G;(y) =c—LVy>o.

Proof. Before proving the theorem, we derive a few relationships
that will facilitate the proofs. Note that

Gi(y) = ey + L) +aE [Vo (v — ©)1)]
y
=cy+Ly) —aw/ (v — &)f (€)de, (6)
0

which is the cost function of a single-period newsvendor model,
hence is convex; and

Giy) =c—l+ (h+1—aw)F(y) =0= S,

e l—c
=F <h+l—(xw>. 0

Also, for Gy(y) defined in (5), we have
Go) =c—Il+(h+1—ac)F@y) =0= S,

=F (l_c ) (8)
N h+l—ac)’

Comparing (7) and (8), we have
Go(¥) = G1(y) = a(w — OF(y) <0,
ie,Gy(y) < Gj(y)sincew <c. (9)

Moreover, since F~!(-) is monotone increasing, we have S; < S,
and S1 < S] < 50.
Second, from the properties of K-convexity, we know

=+ Guy1Smr1) +K
Vi1 (x) = {—cx + Gnr1(®)

form=0,1,2,...,T — 1.

if0 < x < spy1,
ifx > Spe1;

Moreover, if0 <y < s,

Gm+1(.V) =0y + L(y) + oE [Vm ((y - $)+)]
y
o+ L)+ [K + Gn(Sm) — € / - smsms}
0

Go() + a[K + Gm(Sm)]. (10)

((10) follows from the fact that: if y < s, then (y — £)" < sp;
consequently, an order of S, — (y — €)™ would be placed in period
m.)

And, ify > s, then

Gri1() = & + L) + aE [Vi (v — ©)7)]
Y—Sm
=CJ/+L(V)+Ot/(; [CGn(y — &) —cly — E)If (§)dE

y y
+Ol[(1<+Gm(5m)) f(i‘")df—c/ (V—E)f(é)d%']
Y—Sm

Y—Sm

+00
ta [(K + G(Sm) f(s)ds]

y

Y—Sm
— Goy) + f Gy — £)f (6)dE
0

+a (K +Gn(Sm) (1 —Fy — sm)). (11)

((11) is derived from three contingencies: (1) if s;, < (y — &), then
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