
Operations Research Letters 39 (2011) 359–362

Contents lists available at SciVerse ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A 3/2-approximation algorithm for ki-partitioning
Hans Kellerer a,∗, Vladimir Kotov b

a Institut für Statistik und Operations Research, Universität Graz, Universitätsstraße 15, A–8010 Graz, Austria
b Belarussian State University, Faculty of Applied Mathematics and Computer Science, Prospekt Nezavisimosty 4, 220030 Minsk, Belarus

a r t i c l e i n f o

Article history:
Received 19 November 2010
Accepted 15 May 2011
Available online 13 June 2011

Keywords:
Scheduling
Parallel machines
Partition problem
Worst-case analysis

a b s t r a c t

We consider themultiprocessor scheduling problemwith the objective ofminimizing themakespan such
that the number of items on each machine does not exceed a machine dependent cardinality limit. We
present an elementary approximation algorithmwithworst-case performance ratio 3/2 and running time
linear in the number of items.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In thisworkwe address the problemof assigning n independent
items to m parallel machines, each having an associated machine
dependent cardinality limit, such that the maximum completion
time is minimized and the number of items on each machine does
not exceed the corresponding cardinality limit.

More formally, we are given a set N = {1, 2, . . . , n} of n
independent items with processing times or lengths p1, . . . , pn.
Each item has to be assigned to one of m parallel machines
M1,M2, . . . ,Mm. EachmachineMi has a cardinality limit or capacity
c(i) = ki, i.e. at most ki items can be processed on machine Mi
with n ≤

∑m
i=1 ki. The objective is to minimize the makespan.

The problem is a generalization of the classical parallel machine
problem P| · |Cmax, i.e. we have a parallel machine problem
with limited number of items per machine. Since the problem
corresponds to partitioning a set of integers into a given number of
subsets, it is called the ki-partitioning problem (ki-PP) as introduced
in [1].

The ki-PP is a generalization of the classical multiprocessor
scheduling problem P| · |Cmax of assigning independent jobs to
parallel, identical machines with the objective of minimizing the
makespan. Since P| · |Cmax is well-known to be strongly NP-hard,
the same holds for ki-PP.

The fact that ki-PP is NP-hard calls for design and analysis of ap-
proximation algorithms. Recall that a heuristic for a minimization
problem that finds for any instance a solution such that the value of
the heuristic solution is at most ρ ≥ 1 times the optimal solution

∗ Corresponding author.
E-mail addresses: hans.kellerer@uni-graz.at (H. Kellerer), kotovVM@yandex.ru

(V. Kotov).

value is called a ρ-approximation algorithm; the value of ρ is called
aworst-case performance ratio. Given an ε > 0, a family of (1+ ε)-
algorithms is called a polynomial-time approximation scheme (PTAS)
if its running time depends polynomially on the length of the en-
coded input.

If the cardinality limits of the machines are identical, i.e.
c(i) = k, i = 1, . . . ,m, the corresponding problem is called the
k-partitioning problem (k-PP). An approximation algorithm with
performance ratio 4/3 for problem k-PP was presented by Babel
et al. [1]. Upper and lower bounds for k-PP have been developed
by Dell’Amico and Martello [5] and Dell’Amico et al. [3]. Lower
bounds and heuristic algorithms for ki-PP have been presented
by Dell’Amico et al. [4]. The paper by Chi et al. [2] contains
a 3-approximation for ki-PP. Recently, Saha and Srinavasan [6]
developed a rounding method which yields a generalization of
the work of Shmoys and Tardos on the generalized assignment
problem [7] and yields a 2-approximation for ki-PP as a special
case.

In this work we present an elementary approximation algo-
rithm for ki-PP with worst-case performance ratio 3/2. The algo-
rithm is based on guessing the number of items greater than half
of the optimal makespan, and assigning the items blockwise to the
machines in ascending order of capacities. This guarantees that the
schedule obtained has a makespan which is not larger than 3/2
times an appropriate lower bound. The running time of the algo-
rithm is linear in the number of items.

Let I ⊆ N be a set of items. Then, p(I) denotes the total
processing time of items in I . Let M be a machine to which a set
of items I has been assigned. Then, ℓ(M) := p(I) denotes the load
of machine M . As usual, C∗ denotes the makespan of an optimal
schedule and CH the makespan of a heuristic schedule.

0167-6377/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2011.06.005

http://dx.doi.org/10.1016/j.orl.2011.06.005
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:hans.kellerer@uni-graz.at
mailto:kotovVM@yandex.ru
http://dx.doi.org/10.1016/j.orl.2011.06.005


360 H. Kellerer, V. Kotov / Operations Research Letters 39 (2011) 359–362

W.l.o.g., let the items be sorted in non-increasing order of
processing times, i.e. p1 ≥ p2 ≥ · · · ≥ pn, and the machines be
sorted in non-decreasing order of capacities, i.e. k1 ≤ k2 ≤ · · · ≤

km. By adding dummy items of length zero we may assume that∑m
i=1 ki = n, i.e. exactly ki items have to be processed on each

machine.
The work is divided into sections as follows. In Section 2 a

lower bound is constructed which will be used for the algorithm
presented in the next section. In Section 3 we describe the
3/2-approximation algorithm and its worst-case analysis.

2. A lower bound dependent on the items greater than C∗/2

We call items greater than C∗/2 big items; items not greater
than C∗/2 are called small items. Let ℓ ∈ {0, 1, . . . ,m} be the
number of big items. Due to the sorting of the items the big items
are exactly the items 1, . . . , ℓ.

For h2 = 1, . . . , ℓ, h1 = 1, . . . , h2+1, v = 0, . . . ,m−ℓ denote
with

c(h1, h2; v) :=

h2−
j=h1

kj +
m−

j=m−v+1

kj

the total capacity of the machines Mh1 ,Mh1+1, . . . ,Mh2 ,Mm−v+1,
Mm−v+2, . . . ,Mm.

Set h := h2 − h1 + 1 and define for h + v > 0

LB(h1, h2; v) :=
1

h + v


h2−

j=h1

pj +
n−

j=n−c(h1,h2;v)+h+1

pj


. (1)

Finally, we set
LB := max{ max

h1,h2,v
LB(h1, h2; v), 2pℓ+1}. (2)

Lemma 1. The value LB defined in (2) is a lower bound for the optimal
solution value C∗.
Proof. Since item ℓ is the smallest big item, we have 2pℓ+1 ≤

C∗. Let h1, h2, v be given. The other bound can be obtained as
follows. At most h1 − 1 big items can be put on the machines
M1, . . . ,Mh1−1. Thus, there are h machines among the machines
Mh1 ,Mh1+1, . . . ,Mm which contain in total at least h of the big
items {p1, . . . , ph2} in the optimal solution. Denote the set of these
hmachines by M′.

Choose v machines from Mh1 ,Mh1+1, . . . ,Mm with largest
capacities and which are not in M′. Together with M′ we obtain
a set M of h + v machines. The total length of the big items
in M is at least

∑h2
j=h1

pj which corresponds to the first term in
(1). The total number of the remaining items assigned to M is at
least c(h1, h2; v) − h. Their total length is at least the sum of the
c(h1, h2; v) − h smallest items which corresponds to the second
term in (1). An averaging argument gives C∗

≥ LB(h1, h2; v). By
taking the maximum over all possible values for LB(h1, h2; v) we
get that LB is a lower bound for the optimal solution value. �

3. A 3/2-approximation algorithm

In this section we present a 3/2-approximation algorithm for
ki-partitioning. Recall that items greater than C∗/2 are called big
items; the other items are called small items. This algorithmguesses
the number of big items ℓ by running a procedure P(λ) for λ =

0, 1, . . . ,m and choosing the best solution. The procedure P(λ)
assigns the items p1, . . . , pλ in decreasing order to the machines
M1, . . . ,Mλ. Then, machines are filled inm iterations in increasing
order, i.e., first, items are assigned tomachineM1, then, tomachine
M2, and so on. Let the list L := (λ + 1, λ + 2, . . . , n) contain
the remaining items. The list is updated by removing those items
which have been assigned to machineMi in iteration i.

For describing the algorithmmore formally, we introduce some
further notation. Define Li to be the list of non-assigned items

sorted in non-increasing order after iteration i and Ai := L \ Li the
list of assigned items. Set L0 := L and A0 := ∅.

For i = 1, . . . ,m set

qi :=


pi, i = 1, . . . , λ,
0, otherwise,

and

k̃i :=


ki − 1, i = 1, . . . , λ,
ki, otherwise.

For 1 ≤ m, let si denote the last (smallest) element in Ai. Set
s0 := λ. Hence, si−1 is the itemwith smallest processing timewhich
has been assigned to a machine before iteration i, i ≥ 1.

If Li−1 contains at least k̃i items with index greater than v, then
let Ti(v) consist of the k̃i consecutive items in Li−1 starting with
v + 1. If there are less than k̃i items with index greater than v in
Li−1, the set Ti(v) will consist of the last (smallest) k̃i items of Li−1.

Then, procedure P(λ) and algorithm A can be described as
follows:
Procedure P(λ):

1. Assignment of the biggest λ items:
For i := 1 to λ assign item i to machineMi.

2. Assignment of the remaining items:
For i := 1 tom do the following:
2.1 If LB ≤ qi + p(Ti(si−1)) ≤

3
2 LB: Assign items of Ti(si−1) to

machine Mi.
2.2 If qi + p(Ti(si1)) > 3

2 LB: If there is a smallest index t > si−1

such that qi + p(Ti(t)) ≤
3
2 LB, assign items of Ti(t) to

machine Mi. Otherwise, assign the last (smallest) k̃i items
of Li−1 to Mi.

2.3 If qi + p(Ti(si−1)) < LB: If there is a largest index r < si−1
such that qi+p(Ti(r)) ≥ LB, assign items of Ti(r) tomachine
Mi. Otherwise, assign the first (largest) k̃i items of Li−1 toMi.

Algorithm A:

1. For λ := 0 tom run procedure P(λ).
2. Output the best solution.

Recall that ℓ is the number of items greater than C∗/2, 0 ≤

ℓ ≤ m. We will show in the following that P(ℓ) returns a
solution makespan not exceeding 3

2C
∗. Notice that pℓ > C∗/2 ≥

LB/2, pℓ+1 ≤ LB/2 and p1 ≤ LB where the last inequality follows
from the bound LB(1, 1; 0).

A block B is a maximal subset of items of the list of assigned
items Ai such that all elements of B are consecutive in L. Every list
Ai is uniquely partitioned into disjoint blocks. The blocks will be
numbered in increasing order, i.e. Ai = (Bi(1), Bi(2), . . .). Given
two items i1, i2 with i1 < i2, then from i1 ∈ Bi(j1), i2 ∈ Bi(j2)
it follows that j1 ≤ j2. Moreover, denote with Bi(la) the last block
of Ai.

The properties of the algorithm are described in several
observations.

Observation 1. Let Bi(v) be a block of iteration i. Then, there is a
block Bi+1(w) in iteration i + 1 such that Bi(v) ⊆ Bi+1(w).

Proof. Due to the maximality of a block, the elements of Bi(v) are
not distributed to several blocks in later iterations j > i. �

The next observation is obvious:

Observation 2. Let Bi(i1), Bi(i2) be two blocks with i1 < i2. If
Bi(i1) ⊆ Bj(j1) and Bi(i2) ⊆ Bj(j2) for some iteration j > i, then
j1 ≤ j2.

Let Si denote the set of small items assigned to machine Mi in
iteration i of step 2 of procedure P(ℓ). We say that a machineMi is
associated with block B if Si ⊆ B.



Download English Version:

https://daneshyari.com/en/article/1142627

Download Persian Version:

https://daneshyari.com/article/1142627

Daneshyari.com

https://daneshyari.com/en/article/1142627
https://daneshyari.com/article/1142627
https://daneshyari.com

