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a b s t r a c t

When multiple correlated predictors are considered jointly in regression modeling, estimated coefficients may

assume counterintuitive and theoretically uninterpretable values. We survey several statistical methods that imple-

ment strategies for the analysis of collinear data: regression with regularization (the elastic net), supervised com-

ponent generalized linear regression, and random forests. Methods are illustrated for a data set with a wide range

of predictors for segment duration in a German speech corpus. Results broadly converge, but each method has its

own strengths and weaknesses. Jointly, they provide the analyst with somewhat different but complementary per-

spectives on the structure of collinear data.

� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Response measures in linguistics and phonetics are often a
function not of a single predictor but of many predictors jointly,
reflecting a move away from mono-causal to multifactorial
explanations. For instance, reductions and deletions in speech
have been shown to correlate with a range of measures which
include frequencies of occurrence and conditional probabilities
at word and segment level (among others Aylett & Turk, 2004;
Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Gahl, 2008;
Jurafsky, Bell, Gregory, & Raymond, 2000; Priva, 2015;
Tremblay & Tucker, 2011). For example, Tremblay and
Tucker (2011) used no less than 18 such measures to predict
the durations of four-word sequences. Typically, many of the
covariates included in these analyses serve as controls for
potential confounds with predictors of central theoretical
interest.

When predictors are completely uncorrelated and fully
orthogonal, the results of a multivariable regression model
and separate regressions with one predictor each will be virtu-
ally identical. Multiple regression comes into its own for data
with non-orthogonal predictors. For such data, it serves as a
mathematically principled arbiter for teasing apart relevant

from irrelevant predictors. However, when predictors are
strongly correlated, i.e., for collinear data, this arbitrage tends
to result in counterintuitive and uninterpretable coefficients
(Belsley, Kuh, & Welsch, 1980; Farrar & Glauber, 1967). In this
study, we review statistical methods that work around this
problem.

When a data set is characterized by substantial collinearity,
several problems arise. First, as already mentioned, parameter
estimates may assume unexpected and theoretically uninter-
pretable values. Second, the model fit to the data will be unsta-
ble, in the sense that removal of just a few data points may
have substantial consequences for the estimates of regression
parameters. This holds both for linear regression and for the
linear mixed model. Third, it can happen that no predictor on
its own is significant, whereas all predictors jointly are success-
ful in explaining a significant part of the variance in the
response (Chatterjee, Hadi, & Price, 2000).

In what follows, we begin with an introduction to the problem
of collinearity1 and its adverse consequences for the magnitude
and sign of estimated coefficients. We then describe a data set
with substantial collinearity that will serve as the test case for our
analyses. Subsequently, we introduce and illustrate three
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1 In the context of nonlinear regression, collinearity also rears its ugly head in the form of
concurvity. Concurvity can render models such as generalized additive (mixed) models
unstable. We therefore briefly discuss how concurvity can be assessed, and what
measures the analyst might consider when concurvity is high, in the appendix.
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methods for analyzing collinear data. The first of these is a non-
parametric technique from machine learning, random forests.
Random forests enable the analyst to assess the relative impor-
tance of predictors. The second method is supervised compo-
nent generalized linear regression (SCGLR). SCGLR performs
dimensionality reduction on the predictor space, resulting in a
smaller set of orthogonal predictors (the supervised compo-
nents). SCGLR comes with visualization methods for inspecting
how the original predictors load on the supervised components,
and it provides regression coefficients for the original predictors
that are properly shrunk. The third method that we discuss is the
elastic net, a regularized regression technique that not only
shrinks coefficients, but shrinks some of these completely to
zero. This method therefore can be used to perform variable
selection. For each method, we introduce the general concepts,
and then illustrate its use for our example data set.

There is no fixed set of guidelines that guarantee the “cor-
rect” analysis of collinear data. George Box’s famous aphorism
that all models are wrong but some are useful (Box, 1976) is
especially relevant with respect to models for highly collinear
data. The methods we review in the present study therefore
provide the analyst with a toolkit that we find useful for explor-
ing and understanding in complementary ways to what extent,
and how a response might be shaped by a set of collinear
predictors.

All analyses discussed in this study are documented step
by step in the Supplementary Materials, to be downloaded
from https://osf.io/5merb/. For these analyses, we made use
of the statistical programming environment R (R Core Team,
2018) and specialist packages available for R (introduced
below).

2. Suppression and enhancement

Suppression and enhancement occur in the linear regres-
sion model when two (or more) predictors for a given response
Y are strongly correlated. Take, for example, an analysis in
which response times (dependent variable Y) in auditory lexi-
cal decision have to be predicted by word frequency counts
in American English (predictor A) and British English (predictor
B). Given that such frequency counts will tend to be strongly
correlated, suppression and enhancement are likely to make
the coefficients of the regression model uninterpretable. To
understand why this happens, first consider the case in which
we fit two one-predictor regression models to Y,

Yi ¼ b0 þ bAAi þ �i ; �i � Nð0;rÞ; ð1Þ
Yi ¼ b0 þ bBBi þ �i ; �i � Nð0;rÞ: ð2Þ
where the b0 represent the intercepts, bA and bB denote the
coefficients for predictors A and B, and � is a Gaussian error
term. When A and B are uncorrelated and completely orthogo-
nal, the results of these two one-predictor models will almost
completely identical to a multivariable regression model in Y
in predicted from A and B jointly:

Yi ¼ b0 þ bAAi þ bBBi þ �i ; �i � Nð0;rÞ: ð3Þ
In this case, the multivariable regression model has nothing to
add about the effects of A and B that we did not already know
from the two one-predictor analysis. However, when A and B
are correlated, and not strictly orthogonal, then multiple

regression comes into its own as the arbiter deciding which pre-
dictors should be given more (or less) weight. When predictors
are only mildly correlated, there is little collinearity and the
weights estimated by the multiple regression model (3) will
make sense, but when strong collinearity is present, the result-
ing model will become theoretically uninterpretable.

Following Friedman and Wall (2005), we illustrate this phe-
nomenon by varying the correlation between predictors A and
B, while keeping constant the correlations between A and Y
as well as the correlations between B and Y. We simulated
multiple data sets with 1000 observations each, using the
mvrnorm function from the MASS package (Venables &
Ripley, 2002). Y , A and B are all standard normal random
variables. We manipulated the correlation between A and B
(rAB) to range from close �1 to close to þ1 in steps of
0:01. We fixed the correlation between B and Y at
rBY ¼ 0:3, but considered three different correlations between
A and Y : rAY ¼ �0:3, rAY ¼ 0:0 and rAY ¼ 0:6. When
rAB ¼ 0, bA is equal to rAY and bB ¼ rBY .

Fig. 1 illustrates the consequences of varying the correla-
tion between A and B for the estimates of slopes bA and bB

(top panels) and the corresponding t-values (bottom panels).
Across all panels of Fig. 1, dashed lines represent bA and solid
lines bB. The three values of rAY are listed above their respec-
tive panels.

First consider the panels graphing coefficients against rAB.
When rAB is zero, bA is �0.3 when rAY ¼ �0:3, it is 0 when
rAY ¼ 0, and it is 0.6 when rAY ¼ 0:6. As rBY is fixed at 0.3,
bB is always 0.3 when rAB ¼ 0. When rAB moves away from
zero, the coefficients change, and the more extreme rAB
becomes, the more extreme the changes in the coefficients
are. When rAB approximates 1, we find large positive and neg-
ative values for both bA and bB. Which predictor receives a
positive coefficient and which a negative depends on rAB.
When rAB is shifted towards �1, coefficients are not enhanced,
but suppressed: both bA and bB assume smaller values than
they have when rAB ¼ 0. It is noteworthy that bA is strongly
enhanced even when rAY ¼ 0.

Estimates of the t-values associated with the coefficients
also vary with rAB and can be very large for extreme positive
values of rAB. This leads to false positives for bA when
rAY ¼ 0 and rAB is large. In other words, the model supports
a significant effect of A although there is in fact none. False
negatives arise when rAY ¼ �0:3, rBY ¼ 0:3, and rAB is close
to �1. In other words, the model does not support a significant
effect of A and B although they are in fact significantly corre-
lated with Y. In fact, strong collinearity can give rise to a model
that succeeds in explaining variance of the predictor, without a
single regressor being significant (see, e.g., Chatterjee & Hadi,
2012b; Friedman & Wall, 2005; Hadi, 1988, for examples).

Large coefficients with opposite sign for strongly correlated
predictors are the hallmark of collinearity. In this case, the coef-
ficients become difficult to interpret. For the above example of
American and British frequency of occurrence, one frequency
measure will reveal a coefficient with the expected negative
sign, but the other frequency measure will emerge with a coef-
ficient with an uninterpretable positive sign.

When strong collinearity is present, it is important to take a
step back, and to address the question of how the artifacts of
strong collinearity are best avoided. Before introducing
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