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a b s t r a c t

Merton’s model views equity as a call option on the asset of the firm. Thus the asset is partially observed
through the equity. Then using nonlinear filtering an explicit expression for likelihood ratio for underlying
parameters in terms of the nonlinear filter is obtained. As the evolution of the filter itself depends on the
parameters in question, this does not permit direct maximum likelihood estimation, but does pave the
way for the ‘Expectation–Maximization’ method for estimating parameters.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The assessment of credit risk is one of the most important
problems in quantitative finance. A powerful approach to this
is based on the option theoretic interpretation by Merton [27]
(also see [4]). This approach is referred to as the Asset Value
Model (AVM), or structural approach to credit risk [2,5,14,16]. While
theoretically very gratifying, this still leaves wide open several
computational issues. The main aim of this article is to propose
a computational scheme for credit risk evaluation based on AVM.
While for purposes of exposition we stick to a simple model,
the underlying philosophy is broader and can be extended to
more elaborate models. It has the advantage of having a rigorous
footing based on methodologies that have already been utilized
extensively in the signal processing community and it accounts
for aspects not addressed hitherto in existing literature, as will
become apparent. There is another approach to credit risk known
as the reduced form (or intensity based) approach where the
reason behind a default is not investigated. Instead, the dynamics
of default are exogenously given through adefault rate or intensity;
see [1,14,16] and the references therein. We do not follow this
approach in this paper.

We begin by recalling in some detail the AVM model and the
current status of this problem. In this approach, the asset value
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process {At} of the firm is assumed to follow a geometric Brownian
motion (GBM) given by

dAt = νAtdt + σAtdWt , t ≥ 0 (1.1)

where ν is the net mean return rate on the assets, i.e., ν = µ − γ ,
where µ is the gross mean return on the assets and γ is the
proportional cash payout rate; σ is the volatility, and {Wt} is the
standard Brownian motion. It is also assumed that the company
has a simple capital structure consisting of one debt obligation
and one type of equity. Let Et denote the equity process of the
companywhich is traded publicly. Suppose the processDt denotes
the market value of the debt obligation of the company which is
assumed to have the cash profile of a zero-coupon bond maturing
at a prescribed future time T and interest adjusted face value K. In
the classical model [27] the company defaults if AT < K . If the
company defaults, then the payoff to the equity holders is zero.
If it does not, i.e., AT ≥ K , then there is a net profit of AT − K
after paying back the debt. Thus the total payoff to equity holders
is (AT − K)+

def
= max(AT − K , 0), which is identical to the payoff

for a European call option on {At} with strike price K , constant
dividend rateγ andmaturity T . Therefore for t ∈ [0, T ], Et is a long
European call Cγ

t from the point of view of the equity holders. Thus
by the Black–Scholes–Merton option pricing formula it follows that

Et = Cγ
t = e−γ (T−t)AtΦ(d1(At , T − t))

− Ke−r(T−t)Φ(d2(At , T − t)) (1.2)

where, for r def
= the risk-free interest rate,

d1(x, t)
def
=

log
 x
K


+


r − γ +

1
2σ

2

t

σ
√
t

(1.3)
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√
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, (1.4)

and Φ(·) as usual denotes the Gaussian distribution function. The
value of the debt obligation DT at time T is given by

DT = min (K , AT ) = K − (K − AT )
+.

The above payoff is equivalent to that of a portfolio consisting of
a default-free loan with face value K maturing at T and a short
European put option on {At} with strike price K and maturity T .
Thus the value of Dt at time t is given by

Dt = Ke−r (T−t)
− Pγ

t (1.5)

where Pγ
t denotes the price of the put option on At with strike price

K , constant dividend rateγ andmaturity T . Using the put-call parity

Ate−γ (T−t)
+ Pγ

t = Cγ
t + Ke−r (T−t)

we obtain

Dt = Ate−γ (T−t)
− Et (1.6)

where At and Et are determined from (1.1) and (1.2) respectively.
The Eq. (1.6) gives the ‘theoretical’ price of the debt at time t .

Another key concept in the AVM is the default probability. In
the classical model the conditional probability of default is given
by

P(AT < K | At) = Φ


log Lt − m(T − t)

σ
√
T − t


, (1.7)

where m = ν −
1
2σ

2 and Lt =
K
At

is the leverage ratio of the firm
at time t .

We have thus far considered the case when default occurs only
at the time T of maturity of the debt. Black and Cox [3] introduced
the concept of first passage time to compute the default probability.
In this model, default occurs at a random time τ ∈ (0, T ]when the
asset value At falls below a level D for the first time. We assume
thatD ≤ K . IfD > K , then the debt holders are fully protected [16].
More precisely, let

τ1 =


T if AT < K
∞ otherwise.

Let τ2 be the stopping time given by

τ2 = inf{t ∈ (0, T ] | At < D}.

Then the default time τ is given by

τ = τ1 ∧ τ2.

Thus the forward conditional default probability at time t is given
by

pd (At) = 1 − P(τ1 ∧ τ2 > T |At).

A simple computation shows that

pd(At) = Φ


log Lt − m(T − t)

σ
√
T − t



+


D
At

 2m
σ2

Φ


log(D2/(KAt)) + m(T − t)

σ
√
T − t


. (1.8)

This default is obviously higher than the corresponding default
probability in the classical approach. Note that (1.7) is obtained as
a special case of (1.8) with D = 0.

In the first passage model the payoff to equity holders at
maturity is given by

ET = (AT − K)+I{MT ≥ D}

where Mt = mins≤t As. The above payoff corresponds to a Euro-
pean down-and-out call on At with strike price K , barrier D(< K),
constant dividend rate γ and maturity T . Thus at an earlier time t ,
Et is given by

Et = Cγ
t − e−γ (T−t)At


D
At

 2(r−γ )

σ2 +1

Φ(d3(At , T − t))

+ Ke−r (T−t)


D
At

 2(r−γ )

σ2 −1

Φ(d4(At , T − t)) (1.9)

where
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def
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In this model, the value of the debt obligationDT at time T is given
by

DT = K − (K − AT )
+

+ (AT − K)+I{MT < D}

which is equivalent to a portfolio consisting of a risk free loan
with face value K , a short European put on At with strike price
K , constant dividend rate γ and maturity T , and a long European
down-in-call on At with strike price K , dividend rate γ , barrier D
and maturity T . Therefore at an earlier time the value of the debt
Dt is given by

Dt = Ate−γ (T−t)
− Cγ

t + e−γ (T−t)At


D
At

 2(r−γ )

σ2 +1

× Φ(d3(At , T − t)) − Ke−r (T−t)


D
At

 2(r−γ )

σ2 −1

× Φ(d4(At , T − t)). (1.12)

Various extensions of the first passage time models have been
studied in the literature which in particular include the case when
the default boundary is given by a suitable stochastic process;
see [2] and the references therein. The tractability of more general
models declines rapidly with growing enrichment of the models,
as pointed out in [13]. The AVM is the theoretical basis for the
popular commercial estimated default frequency (EDF) by KMV,
default probabilities by Moody’s and related ratings—see [14,22].
But these are based on historical data used in their commercial
software. These procedures are proprietary and not available in the
public domain. The option theoretic AVMmodels have also become
an integral part of valuations of corporate debts using (1.2) and
(1.5). One of the major difficulties in this approach is that the asset
value process {At} is not observable and the parameters ν, σ are
unknown. Since the equity process {Et} is traded in the market, it
is therefore observable. Suppose we assume that {Et} is also a GBM
given by, say,

dEt = µEEtdt + σEEtdW ′

t (1.13)

where {W ′
t } is a standard Brownian motion. Since {Et} is

observable, the parameters µE, σE can be estimated from the
market data. Assuming γ = 0, since {Et} is a call option on {At},
using Ito’s formula and some additional analysis, it has been shown
in [5] that

σE

σ
=

At

Et
Φ(d1(At , T − t)). (1.14)

Now At and σ are determined from the Eqs. (1.2) and (1.14).
This is the standard textbook approach to valuing corporate
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