Contents lists available at ScienceDirect # **Operations Research Letters** journal homepage: www.elsevier.com/locate/orl # Integrality gap of the hypergraphic relaxation of Steiner trees: A short proof of a 1.55 upper bound Deeparnab Chakrabarty ^a, Jochen Könemann ^b, David Pritchard ^{c,*} - ^a University of Pennsylvania, United States - ^b University of Waterloo, Canada - ^c École Polytechnique Fédérale de Lausanne, Switzerland #### ARTICLE INFO Article history: Received 12 June 2010 Accepted 6 September 2010 Available online 17 September 2010 Keywords: Hypergraph Integrality gap Randomized algorithm Steiner tree #### ABSTRACT Recently, Byrka, Grandoni, Rothvoßand Sanità gave a 1.39 approximation for the Steiner tree problem, using a hypergraph-based linear programming relaxation. They also upper-bounded its integrality gap by 1.55. We describe a shorter proof of the same integrality gap bound, by applying some of their techniques to a randomized loss-contracting algorithm. © 2010 Elsevier B.V. All rights reserved. #### 1. Introduction In the Steiner tree problem, we are given an undirected graph G = (V, E) with costs c on edges and its vertex set partitioned into terminals (denoted $R \subseteq V$) and Steiner vertices $(V \setminus R)$. A Steiner tree is a tree spanning all of R plus any subset of $V \setminus R$, and the problem is to find a minimum-cost such tree. The Steiner tree problem is APX-hard, thus the best we can hope for is a constant-factor approximation algorithm. The best known ratio is obtained by Byrka et al. [1]: their randomized iterated rounding algorithm gives approximation ratio $\ln(4) + \epsilon \approx 1.39$. The prior best was a $1 + \frac{\ln 3}{2} + \epsilon \approx 1.55$ ratio, via the deterministic loss-contracting algorithm of Robins and Zelikovsky [6]. The algorithm of [1] differs from previous work in that it uses a linear programming (LP) relaxation; the LP is based on hypergraphs, and it has several different looking but equivalent [2,5] nice formulations. A second result of [1] concerns the LP's integrality gap, which is defined as the worst-case ratio (max over all instances) of the optimal Steiner tree cost to the LP's optimal value. Byrka et al. show that the integrality gap is at most 1.55, and their proof builds on the analysis of [6]. In this note we give a shorter proof of the same bound using a simple LP-rounding algorithm. E-mail address: david.pritchard@epfl.ch (D. Pritchard). We now describe one formulation for the hypergraphic LP. Given a set $K \subseteq R$ of terminals, a *full component* on K is a tree whose leaf set is K and whose internal nodes are Steiner vertices. Without loss of generality, Steiner trees have no Steiner nodes of degree 1, and under this condition they decompose in a unique edge-disjoint way into full components; Fig. 1(i) and (ii) show an example. Moreover, one can show that a set of full components on sets $\{K_1, \ldots, K_r\}$ forms a Steiner tree if and only if the hypergraph $(V, \{K_1, \ldots, K_r\})$ is a *hyper-spanning tree*. Here, a hyper-spanning tree means that there is a unique path (simple alternating vertex-hyperedge sequence of incidences) connecting every pair of vertices. Let F(K) denote a minimum-cost full component for terminal set $K \subseteq R$, and let C_K be its cost. The hypergraphic LP is as follows: min $$\sum_{K} C_K x_K :$$ $$\forall \varnothing \neq S \subseteq R : \sum_{K: K \cap S \neq \varnothing} x_K (|K \cap S| - 1) \leq |S| - 1$$ $$\sum_{K} x_K (|K| - 1) = |R| - 1$$ $$\forall K : x_K > 0.$$ (3) The integral solutions of (\mathcal{S}) correspond to the full component sets of Steiner trees. As an aside, the r-restricted full component method (e.g. [4]) allows us to assume that there are a polynomial number of full components while affecting the optimal Steiner tree cost by a $1 + \epsilon$ factor. Then, it is possible to solve (\mathcal{S}) in polynomial time [1,8]. Here is our goal. ^{*} Corresponding address: EPFL SB IMA DISOPT, Station 8, CH-1015 Lausanne, Fig. 1. In (i) we show a Steiner tree; circles are terminals and squares are Steiner nodes. In (ii) we show its decomposition into full components, and their losses in bold. In (iii) we show the full components after loss contraction. **Theorem 1** ([1]). The integrality gap of the hypergraphic LP (δ) is at most $1 + (\ln 3)/2 \approx 1.55$. #### 2. Randomized loss-contracting algorithm In this section we describe the algorithm. We introduce some terminology first. The *loss* of full component F(K), denoted by Loss(K), is a minimum-cost subset of F(K)'s edges that connects the Steiner vertices to the terminals. For example, Fig. 1(ii) shows the loss of the two full components in bold. We let loss(K) denote the total cost of all edges in Loss(K). The *loss-contracted full component of* K, denoted by LC(K), is obtained from F(K) by contracting its loss edges (see Fig. 1(iii) for an example). For clarity we make two observations. First, for each K the edges of LC(K) correspond to the edges of $F(K) \setminus Loss(K)$. Second, for terminals u, v, a uv edge may appear in $LC(K_1)$ and $LC(K_2)$ for distinct full components K_1 and K_2 ; but we think of them as distinct parallel edges. Our randomized rounding algorithm, RLC, is shown below. We choose M to have value at least $\sum_K x_K$ such that $t = M \ln 3$ is integral. MST(·) denotes a minimum spanning tree and mst its cost. #### Algorithm RLC. - 1: Let T_1 be a minimum spanning tree of the induced graph G[R]. - 2: $x \leftarrow \text{Solve}(8)$ - 3: **for** $1 \le i \le t$ **do** - 4: Sample a full component K_i : with probability x_K/M it is the full component K, with probability $1 \sum_K x_K/M$ it is the empty set (we sample with replacement) - 5: $T_{i+1} \leftarrow MST(T_i \cup LC(K_i))$ - 6: end for - 7: Output any Steiner tree in $ALG := T_{t+1} \cup \bigcup_{i=1}^{t} Loss(K_i)$. To prove that ALG actually contains a Steiner tree, we must show that all terminals are connected. To see this, note that each edge uv of T_{t+1} is either a terminal-terminal edge of G[R] in the input instance, or else $uv \in LC(K_i)$ for some i and therefore a u-v path is created when we add in $Loss(K_i)$. ### 3. Analysis In this section we prove that the tree's expected cost is at most $1+\frac{\ln 3}{2}$ times the optimum value of (8). Each iteration of the main loop of algorithm RLC first samples a full component K_i in step 4, and subsequently recomputes a minimum-cost spanning tree in the graph obtained by adding the loss-contracted part of K_i to T_i . The new spanning tree T_{i+1} is no more expensive than T_i ; some of its edges are replaced by newly added edges in $LC(K_i)$. Bounding the drop in cost will be the centerpiece of our analysis, and this step will in turn be facilitated by the elegant $Bridge\ Lemma$ of Byrka et al. [1]. We describe this lemma first. We first define the *drop* of a full component *K* with respect to a terminal spanning tree *T* (it is just a different name for the bridges of [1]). Let T/K be the graph obtained from T by identifying the terminals spanned by K. Then let $$Drop_{T}(K) := E(T) \setminus E(MST(T/K)),$$ be the set of edges of T that are not contained in a minimum spanning tree of T/K, and $drop_T(K)$ be its cost. We illustrate this in Fig. 2. We state the Bridge Lemma here and present its proof for completeness. **Lemma 1** (Bridge Lemma [1]). Given a terminal spanning tree T and a feasible solution x to (\mathcal{S}) . $$\sum_{K} x_{K} \operatorname{drop}_{T}(K) \ge c(T). \tag{1}$$ **Proof.** The proof needs the following theorem [3]: given a graph H = (R, F), the extreme points of the polytope $$\left\{z \in \mathbb{R}^F_{\geq 0} : \sum_{e \in \gamma(S)} z_e \le |S| - 1; \, \forall S \subseteq R, \sum_{e \in F} z_e = |R| - 1\right\} \tag{9}$$ are the indicator variables of spanning trees of H, where $\gamma(S) \subseteq F$ is the set of edges with both endpoints in S. The proof strategy is as follows. We construct a multigraph H = (R, F) with costs c, and $z \in \mathbb{R}^F$ such that the cost of z equals the left-hand side of (1); $z \in (\mathfrak{F})$, and all spanning trees of H have cost at least c(T). Edmonds' theorem then immediately implies the lemma. In the rest of the proof we define H and supply the three parts of this strategy. For each full component K with $x_K > 0$, consider the edges in $\mathsf{Drop}_T(K)$. Contracting all edges of $E(T) \setminus \mathsf{Drop}_T(K)$, we see that $\mathsf{Drop}_T(K)$ corresponds to edges of a spanning tree of K. These edges are copied (with the same cost e) into the set e, and the copies are given weight e0 weight e1 with e2 with e3 maximum-cost edge in the unique cycle of e3. Having now defined F, we see that $$\sum_{e \in F} c_e z_e = \sum_K x_K \operatorname{drop}_T(K).$$ Note that we introduce |K|-1 edges for each full component K, and that, for any $S \subseteq R$, at most $|S \cap K|-1$ of these have both ends in S. These two observations together with the fact that x is feasible for (3) directly imply that z is feasible for (3). To show all spanning trees of H have cost at least c(T), it suffices to show that T is an MST of $T \cup H$. In turn, this follows (e.g. [7, Theorem 50.9]) from the fact that each $e \in F$ is a maximum-cost edge in the unique cycle of $T \cup \{e\}$. \square We also need two standard facts that we summarize in the following lemma. They rely on the input costs satisfying the triangle inequality (i.e. metricity), and that internal nodes of full components have degree at least 3, both of which hold without loss of generality. **Lemma 2.** (a) The value mst(G[R]) of the initial terminal spanning tree computed by algorithm RLC is at most twice the optimal value of (\mathcal{S}) .(b) For any full component K, $loss(K) \leq C_K/2$. ## Download English Version: # https://daneshyari.com/en/article/1142889 Download Persian Version: https://daneshyari.com/article/1142889 <u>Daneshyari.com</u>