
Operations Research Letters 38 (2010) 567–570

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Integrality gap of the hypergraphic relaxation of Steiner trees: A short proof of a
1.55 upper bound
Deeparnab Chakrabarty a, Jochen Könemann b, David Pritchard c,∗

a University of Pennsylvania, United States
b University of Waterloo, Canada
c École Polytechnique Fédérale de Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 12 June 2010
Accepted 6 September 2010
Available online 17 September 2010

Keywords:
Hypergraph
Integrality gap
Randomized algorithm
Steiner tree

a b s t r a c t

Recently, Byrka, Grandoni, Rothvoßand Sanità gave a 1.39 approximation for the Steiner tree problem,
using a hypergraph-based linear programming relaxation. They also upper-bounded its integrality gap by
1.55. We describe a shorter proof of the same integrality gap bound, by applying some of their techniques
to a randomized loss-contracting algorithm.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the Steiner tree problem, we are given an undirected graph
G = (V , E) with costs c on edges and its vertex set partitioned
into terminals (denoted R ⊆ V) and Steiner vertices (V \ R). A
Steiner tree is a tree spanning all of R plus any subset of V \ R, and
the problem is to find a minimum-cost such tree. The Steiner tree
problem is APX-hard, thus the best we can hope for is a constant-
factor approximation algorithm.

The best known ratio is obtained by Byrka et al. [1]: their
randomized iterated rounding algorithm gives approximation
ratio ln(4) + ϵ ≈ 1.39. The prior best was a 1 + ln 3

2 + ϵ ≈ 1.55
ratio, via the deterministic loss-contracting algorithm of Robins
and Zelikovsky [6]. The algorithm of [1] differs from previous work
in that it uses a linear programming (LP) relaxation; the LP is
based on hypergraphs, and it has several different looking but
equivalent [2,5] nice formulations. A second result of [1] concerns
the LP’s integrality gap, which is defined as the worst-case ratio
(max over all instances) of the optimal Steiner tree cost to the LP’s
optimal value. Byrka et al. show that the integrality gap is at most
1.55, and their proof builds on the analysis of [6]. In this note we
give a shorter proof of the same bound using a simple LP-rounding
algorithm.

∗ Corresponding address: EPFL SB IMA DISOPT, Station 8, CH-1015 Lausanne,
Switzerland.

E-mail address: david.pritchard@epfl.ch (D. Pritchard).

We now describe one formulation for the hypergraphic LP.
Given a set K ⊆ R of terminals, a full component on K is a
tree whose leaf set is K and whose internal nodes are Steiner
vertices. Without loss of generality, Steiner trees have no Steiner
nodes of degree 1, and under this condition they decompose
in a unique edge-disjoint way into full components; Fig. 1(i)
and (ii) show an example. Moreover, one can show that a set
of full components on sets {K1, . . . , Kr} forms a Steiner tree if
and only if the hypergraph (V , {K1, . . . , Kr}) is a hyper-spanning
tree. Here, a hyper-spanning tree means that there is a unique
path (simple alternating vertex-hyperedge sequence of incidences)
connecting every pair of vertices. Let F(K) denote aminimum-cost
full component for terminal set K ⊆ R, and let CK be its cost. The
hypergraphic LP is as follows:

min
−
K

CK xK : (S)

∀∅ ≠ S ⊆ R :
−

K :K∩S≠∅

xK (|K ∩ S| − 1) ≤ |S| − 1−
K

xK (|K | − 1) = |R| − 1

∀K : xK ≥ 0.

The integral solutions of (S) correspond to the full component sets
of Steiner trees. As an aside, the r-restricted full component method
(e.g. [4]) allows us to assume that there are a polynomial number
of full components while affecting the optimal Steiner tree cost by
a 1 + ϵ factor. Then, it is possible to solve (S) in polynomial time
[1,8]. Here is our goal.

0167-6377/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2010.09.004

http://dx.doi.org/10.1016/j.orl.2010.09.004
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:david.pritchard@epfl.ch
http://dx.doi.org/10.1016/j.orl.2010.09.004

568 D. Chakrabarty et al. / Operations Research Letters 38 (2010) 567–570

Fig. 1. In (i) we show a Steiner tree; circles are terminals and squares are Steiner nodes. In (ii) we show its decomposition into full components, and their losses in bold. In
(iii) we show the full components after loss contraction.

Theorem 1 ([1]). The integrality gap of the hypergraphic LP (S) is at
most 1+ (ln 3)/2 ≈ 1.55.

2. Randomized loss-contracting algorithm

In this section we describe the algorithm. We introduce some
terminology first. The loss of full component F(K), denoted by
Loss(K), is a minimum-cost subset of F(K)’s edges that connects
the Steiner vertices to the terminals. For example, Fig. 1(ii) shows
the loss of the two full components in bold. We let loss(K)

denote the total cost of all edges in Loss(K). The loss-contracted
full component of K , denoted by LC(K), is obtained from F(K) by
contracting its loss edges (see Fig. 1(iii) for an example).

For claritywemake two observations. First, for eachK the edges
of LC(K) correspond to the edges of F(K) \ Loss(K). Second, for
terminals u, v, a uv edge may appear in LC(K1) and LC(K2) for
distinct full componentsK1 andK2; butwe think of themas distinct
parallel edges.

Our randomized rounding algorithm, RLC, is shown below. We
choose M to have value at least

∑
K xK such that t = M ln 3 is

integral. MST(·) denotes aminimum spanning tree and mst its cost.
Algorithm RLC.
1: Let T1 be a minimum spanning tree of the induced graph

G[R].
2: x← Solve (S)
3: for 1 ≤ i ≤ t do
4: Sample a full component Ki: with probability xK/M it is

the full component K , with probability 1−
∑

K xK/M it is
the empty set (we sample with replacement)

5: Ti+1 ← MST(Ti ∪ LC(Ki))
6: end for
7: Output any Steiner tree in ALG := Tt+1 ∪

t
i=1 Loss(Ki).

To prove thatALG actually contains a Steiner tree,wemust show
that all terminals are connected. To see this, note that each edge
uv of Tt+1 is either a terminal–terminal edge of G[R] in the input
instance, or else uv ∈ LC(Ki) for some i and therefore a u–v path is
created when we add in Loss(Ki).

3. Analysis

In this section we prove that the tree’s expected cost is at most
1+ ln 3

2 times the optimum value of (S). Each iteration of the main
loop of algorithm RLC first samples a full component Ki in step 4,
and subsequently recomputes a minimum-cost spanning tree in
the graph obtained by adding the loss-contracted part of Ki to Ti.
The new spanning tree Ti+1 is no more expensive than Ti; some of
its edges are replaced by newly added edges in LC(Ki). Bounding
the drop in cost will be the centerpiece of our analysis, and this
stepwill in turn be facilitated by the elegant Bridge Lemma of Byrka
et al. [1]. We describe this lemma first.

We first define the drop of a full component K with respect to a
terminal spanning tree T (it is just a different name for the bridges

of [1]). Let T/K be the graph obtained from T by identifying the
terminals spanned by K . Then let

DropT (K) := E(T) \ E(MST(T/K)),

be the set of edges of T that are not contained in a minimum
spanning tree of T/K , and dropT (K) be its cost. We illustrate this
in Fig. 2. We state the Bridge Lemma here and present its proof for
completeness.

Lemma 1 (Bridge Lemma [1]). Given a terminal spanning tree T and
a feasible solution x to (S),−

K

xKdropT (K) ≥ c(T). (1)

Proof. The proof needs the following theorem [3]: given a graph
H = (R, F), the extreme points of the polytope
z ∈ RF

≥0 :
−

e∈γ (S)

ze ≤ |S| − 1; ∀S ⊆ R,
−
e∈F

ze = |R| − 1


(G)

are the indicator variables of spanning trees of H , where γ (S) ⊆ F
is the set of edges with both endpoints in S. The proof strategy is
as follows. We construct a multigraph H = (R, F) with costs c , and
z ∈ RF such that the cost of z equals the left-hand side of (1); z ∈
(G), and all spanning trees of H have cost at least c(T). Edmonds’
theorem then immediately implies the lemma. In the rest of the
proof we define H and supply the three parts of this strategy.

For each full component K with xK > 0, consider the edges in
DropT (K). Contracting all edges of E(T) \ DropT (K), we see that
DropT (K) corresponds to edges of a spanning tree ofK . These edges
are copied (with the same cost c) into the set F , and the copies are
given weight ze = xK . Using the definition of drop, one can show
that each e ∈ F is a maximum-cost edge in the unique cycle of
T ∪ {e}.

Having now defined F , we see that−
e∈F

ceze =
−
K

xKdropT (K).

Note that we introduce |K | − 1 edges for each full component K ,
and that, for any S ⊆ R, at most |S∩K |−1 of these have both ends
in S. These two observations togetherwith the fact that x is feasible
for (S) directly imply that z is feasible for (G).

To show all spanning trees ofH have cost at least c(T), it suffices
to show that T is an MST of T ∪ H . In turn, this follows (e.g.
[7, Theorem 50.9]) from the fact that each e ∈ F is a maximum-
cost edge in the unique cycle of T ∪ {e}. �

We also need two standard facts that we summarize in the
following lemma. They rely on the input costs satisfying the
triangle inequality (i.e. metricity), and that internal nodes of full
components have degree at least 3, both ofwhich holdwithout loss
of generality.

Lemma 2. (a) The value mst(G[R]) of the initial terminal spanning
tree computed by algorithm RLC is at most twice the optimal value
of (S).(b) For any full component K , loss(K) ≤ CK/2.

Download English Version:

https://daneshyari.com/en/article/1142889

Download Persian Version:

https://daneshyari.com/article/1142889

Daneshyari.com

https://daneshyari.com/en/article/1142889
https://daneshyari.com/article/1142889
https://daneshyari.com

