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a b s t r a c t

We consider an assortment and price optimization problem where a retailer chooses an assortment
of competing products and determines their prices to maximize the total expected profit subject to
a capacity constraint. Customers’ purchase behavior follows the multinomial logit choice model with
general utility functions. This paper simplifies it to a problem of finding a unique fixed point of a single-
dimensional function and visualizes the assortment optimization process. An efficient algorithm to find
the optimal assortment and prices is provided.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and literature review

Many firms face the problem of selecting an assortment of
products and determining their prices to maximize the total profit
subject to a capacity constraint. For example, a retailer has to
choose a product assortment to display given a limited shelf
space, and change prices accordingly to meet its business goals.
In the joint assortment and price optimization problem, we first
have to study customers’ purchase behavior and investigate the
substitution pattern of features and prices among similar products.

The multinomial logit (MNL) choice model on substitutable
products has been an active area of research for several decades. It
has received significant attention from researchers of economics,
marketing, operations management and transportation science,
and has motivated tremendous theoretical research and empirical
validations in a large range of applications since it was first
proposed and formulated by McFadden [15]. The MNL model is
based on a probabilistic model of the individual customer utility
and appropriately describes the purchase behavior of customers
facing a variety of competing products.

Talluri and van Ryzin [19], Gallego et al. [9] and Liu and van
Ryzin [14] study an assortment optimization problem under the
MNL model without a capacity constraint and identify the optimal
assortment based on ranking products bymargins. Chen andHaus-
man [6] consider the product line and price selection problem and
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discover themathematical properties that transfer the combinato-
rial optimization problem to a convex optimization. Schon [18] fur-
ther shows that it can be linearized. Rusmevichientong et al. [17]
and Wang [20] consider the assortment problem with a capacity
constraint and develop a geometric nonrecursive polynomial-time
algorithm. Rusmevichientong et al. [16] extend to the nested logit
model with dissimilarity factors less than one for consistency with
the utility maximization theory, and also develop a polynomial-
time approximation scheme. Davis et al. [7] relax the constraint
and consider a general model with arbitrary dissimilarity factors.
They show that the problem is NP-hard and formulate a tractable
convex programwhose optimal objective value is an upper bound.

For a multi-product price optimization problem under theMNL
model, Hanson and Martin [11] show that the profit function is
not concave in prices and they propose a path-following approach
to find the globally optimal solution. Other researchers follow
different approaches and have observed that the markup, which
is price minus cost, is constant across all the products of the firm
at the optimal solution (see [1,3,12,10]). The profit function is
unimodal and the optimal prices are the unique solution to the
first order condition systems (see [2]). Similar results have been
observed in the nested logit model (see [13]). Besbes and Saure [5]
study the assortment and price competition under the MNLmodel
with a capacity constraint. They point out that each retailer
always offers a full-capacity assortment in an equilibrium and the
equilibrium assortment has a nested structure: the products can
be simply ranked by quality values and costs, and the equilibrium
assortment are the top products of full capacity size in the ranking.
In all of their models, it is assumed that the utility functions are
linear in prices and the price sensitivities are identical for all the
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products. Empirical studies have shown that the product-specified
price sensitivities may vary widely and the importance of allowing
different price sensitivities in the MNL model has been recognized
(see [4,8]). Moreover, the utility functions may not be linear in
prices for some products in reality. Unfortunately, the markup is
no longer constant and the nested structure is lost when price
sensitivities are product-differentiated or the utility functions are
not linear.

This paper considers capacitated assortment and price opti-
mization under the MNL model with general utility functions.
Under very mild conditions, it can be simplified to a problem of
finding the fixed point of a decreasing function. For linear utility
functions with product-specified price sensitivities, our analysis
shows that the adjusted markup, which is price minus cost minus
the reciprocal of the price sensitivity, is constant for all the prod-
ucts in an assortment at an optimal solution.

2. The model

Assortment selection and pricing are among the most critical
decisions for a firm with variety of products in an increasingly
competitive business environment. Attraction models, including
the well known MNL model, are the most commonly applied con-
sumer discrete choice models in empirical studies and theoretical
research because they capture demand interdependencies and fit
actual data well in scenarios where customers choose among a set
of alternative products. In this paper, we assume that consumers’
purchase behavior follows the MNL model.

The MNL model can be derived from the underlying random
utility maximization model. Suppose that M := {1, 2, . . . ,m} is
the product set in consideration. The utility Ui of product i at price
pi can be decomposed into two parts: a deterministic component
ui(pi) and a random component ξi, i.e.,

Ui = ui(pi) + ξi.

Without loss of generality, the utility of non-purchase option is as-
sumed to beU0 = ξ0, where ξ0 is also a randomvariable. According
to the random utility maximization model, the probability that an
individual selects alternative i from a given assortment S ⊆ M
with price vector pS := (pi)i∈S is

di(S, pS) = Pr

Ui ≥ max


Us : s ∈ S+


, ∀i ∈ S+, (1)

where S+
:= S ∪ {0}.

We further assume that {ξi, i = 0, 1, . . . ,m} are i.i.d. random
variables with a Gumbel or type I generalized extreme value (GEV)
distribution:

Pr(ξi ≤ x) = e−e−(x+γ )
,

where γ is Euler’s constant (γ ≈ 0.5772). Then, Eq. (1) results in
the celebrated MNL model:

di(S, pS) =
eui(pi)

1 +

s∈S

eus(ps)
, ∀i ∈ S. (2)

We wish to find an assortment with at most C products and
determine their prices to maximize the total expected profit. The
unit cost is ci for product i ∈ M. The capacitated assortment and
price optimization under the MNL model can be formulated as
follows

max
S⊆M, pS

R(S, pS)
def
=


i∈S

(pi − ci)di(S, pS),

s.t., |S| ≤ C,

(3)

where di(S, pS) is defined in Eq. (2) and |S| denotes the cardinality
of set S.

2.1. Price optimization

Wemake some regularity assumptions for the utility functions.

Assumption 1. For each product i ∈ M, the utility function ui(pi)
is differentiable and decreasing in price pi, and limpi→∞(pi −

ci)eui(pi) = 0.

Assumption 1 is compatible to the reality: the utility is decreas-
ing in price and that limpi→∞(pi − ci)eui(pi) = 0 is equivalent to
limpi→∞(pi − ci)di(S, pS) = 0 (the so-called null price is infinite
here). Let u′

i(pi) and u′′

i (pi) be the first and second order derivatives
of ui(pi) in pi respectively for each i ∈ M. Under Assumption 1, it
is straightforward to verify that
∂di(S, pS)

∂pi
= u′

i(pi)di(S, pS)(1 − di(S, pS)) < 0,

∂di(S, pS)

∂pj
= −u′

j(pj)di(S, pS)dj(S, pS) > 0, ∀j ∈ S, j ≠ i.

The probability of selecting each product is decreasing in its
price and increasing in the prices of other products in the assort-
ment. The probability di(S, pS) is often referred to themarket share
of product i in a homogeneous market.

Assumption 2. For each product i ∈ M, the utility function ui(pi)
is twice-differentiable and concave in pi.

Assumption 2 is fairly general and is consistent with the risk-
averse assumption. Taking an individual’s wealth into account,
suppose that the deterministic term of the utility function can be
expressed as follows: ui(pi) = Ki + V (I − pi), where Ki is the
utility from consumption of product i, I is the individual’s income
level and V (·) is the utility with respect to her net wealth. That
ui(pi) is decreasing concave is equivalent to that V (·) is increasing
concave, i.e., the individual is risk-averse, which is a widely used
assumption in psychology, economics and finance. Many utility
functions satisfy Assumption 2, e.g., the class of functions


ui(pi) =

αi − βip
γi
i : βi ≥ 0, γi ≥ 1


.

We first consider the price optimization for each given assort-
ment S. In this step, we only need to consider prices such that the
market share is positive for each product in this assortment be-
cause we will optimize over all assortments later. The price opti-
mization problem is the following

max
pS

R(S, pS),

s.t., di(S, pS) > 0, ∀i ∈ S,
(4)

where di(S, pS) follows the MNL model (2) and R(S, pS) is defined
in problem (3).

Proposition 1. Under Assumption 1, the quantity p∗

j − cj +1/u′

j(p
∗

j )

is constant for all j ∈ S at a (local or global) optimal price vector p∗

S
to problem (4). Moreover, p∗

j − cj + 1/u′

j(p
∗

j ) is also equal to the total
profit priced at p∗

S .
Proof. From the Karush–Kuhn–Tucker (KKT ) conditions, the nec-
essary conditions are

∇


i∈S

(pi − ci)di(S, pS) +


i∈S

λi∇di(S, pS) = 0,

λidi(S, pS) = 0, λi ≥ 0, ∀i ∈ S,

where λi is the Lagrange multiplier. Because di(S, pS) > 0 in prob-
lem (4), λi = 0 for any i ∈ S. Then, for each j ∈ S:

∂R(S, pS)

∂pj
= dj(S, pS) + (pj − cj)u′

j(pj)dj(S, pS)

×

1 − dj(S, pS)


−


i∈S,i≠j

(pi − ci)u′

j(pj)

× di(S, pS)dj(S, pS) = 0.
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