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In this paper, a modified proximal point algorithm with errors, which consists of a resolvent operator
technique step with errors followed by a modified orthogonal projection onto a moving half-space, is
constructed for approximating the solution of the general variational inclusion in Hilbert space. The
convergence of the iterative sequence is shown under weak assumptions. The results improve and extend
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1. Introduction and preliminaries

Let # be a real Hilbert space endowed with a norm || - || and
an inner product {-, -), respectively, and 2% denote the family of
all the nonempty subsets of #.Let M : # — 2% be a set-valued
mapping, Graph(M) = {(v,u) : u € M(v)} denote the graph of
M, and S denote the root set of M,ie.,,S = {x € # : 0 € M(x)}.
Throughout this paper, we assume that S # . We consider the
class of general nonlinear variational inclusions: Find x € # such
that

0 € M(x). (1.1)

As a matter of fact, problems of minimization or maximization of
functions, variational inequality problems, and minimax problems
can be unified into the form (1.1) (see [1,11,10,8,4]). This explains
why many algorithms have been proposed for its solution, see
[11,10,12,13,16,3,2,6,15,5,9,17,14,7]. When M is maximal mono-
tone, Rockafellar [11] introduced the proximal point algorithm,
a(r)ld showed that the sequence {x*}, generated from an initial point
X" by

K = o + €, (1.2)

converges weakly to a solution to (1.1) in R", provided the ap-
proximation is made sufficiently accurate as the iteration proceeds,
where {e¥} is an error sequence, J; = (I + AM)~! for a se-
quence {)\y} of positive real numbers that is bounded away from
zero.
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In 1992, Eckstein and Bertsekas [3] introduced the generalized
proximal point algorithm and proved that the sequence {x*},
generated from an initial point x° by

Vk > 0, (1.3)

where ||y — Ji(x)|| < & for sequences {ex};2, {0k}, {2)720
satisfying

Xk+1 =(1- pk)xk + PrWwk,

E & < 00, inf p > 0, sup pr <2 and
k>0 k>0

k=0 >

inf A >0,

k>0

converges weakly to a solution to (1.1).

In 2003, based on the projection on the domain of M, He et al. [6]
presented a new approximate proximal point algorithm in R" as
follows: for given x* and A > 0, set

K = PolR — €], X =J(X + €,
where £2 is the domain of M, and {e*} is an error sequence and
obeys [le¥|| < millx* — x¥|| with sup-o 7 < 1and infi=g Ak > O.

In 2005, Yang and He [15], using X — x* as the search direction,
obtained the inexact iterate {x**1} by

Bo=J e, A =P — px — 7).,

where C is a nonempty closed convex subset of R", infy>o Ay >
0, lle“] < mellx* — ®| with 322 i < +o0 and {pi} C (0,2)
is a sequence satisfying 0 < infy>g ok, SUPy>o Pk < 2, and proved
the convergence of the sequence {x**1}.

If the set £2(or C) is simple enough, so that projections onto it
are easily executed, then the methods due to He et al. [6] and Yang
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et al. [15] are useful; but, if £2 (or C) is a general closed and convex
set, then a minimal distance problem has to be solved in order to
obtain the next iterate. This might seriously affect the efficiency of
the approximate proximal point algorithm.

Inspired and motivated by He et al. [6] and Yang et al. [15], in
this paper, we replace the projection onto §2(or C) by a projec-
tion onto a specific constructible half-space, and propose a mod-
ified algorithm with errors, which consists of a resolvent operator
technique step with errors followed by a modified orthogonal pro-
jection onto a moving half-space, for approximating the solution
of Problem (1.1). We also prove that the iterative sequence {x¥}
converges weakly to a solution of Problem (1.1) under weak as-
sumptions. Our results improve and extend the corresponding re-
sults shown by Rockafellar [11], Eckstein and Bertsekas [3], Yang
etal.[15], and Han and He [5].

Suppose that X C # is a nonempty closed convex subset and
the distance from z to X is denoted by

dist(z, X) = in)f llz —x||.
XE.

Let Px(z) denote the projection of z onto X, that is, Px(z) satisfies
the condition
lz — Px(2)|| = dist(z, X).

The following well-known properties of the projection operator
will be used in this paper. Forany x,y € # andz € X

() u=Px(x) < (u—x,z—u) >0.

(2) IPx(x) = PxWIl < lIx — ylI.

(3) IPx(x0) — z|I* < [lx — z[|*> — [IPx(x) — x]|*.
Definition 1.1. A multi-valued operator M is said to be
(1) monotone if

(u—v,x—y)>0, Vx,yeH, uecMx), veMy):

Il
EN

(2) maximal monotone, if M is monotone and (I + AM)(F)
for all . > 0, where I denotes the identity mapping on J.

2. Algorithm and convergence

In this section, we shall construct an iterative sequence {x*} for
solving Problem (1.1) involving a maximal monotone mapping, and
prove its weak convergence.

Algorithm 2.1.  Step 0. Select an initial X° € # and set k = 0.
Step 1. Find y* € #¢ such that

(2.1)

il'lszo M >0

V=L + e,

where the positive sequence {)\;} satisfies o =

and {e*} is an error sequence.

Step2.SetK = {z € 3¢ : (X —y*+ ek, z —y*) <0} and
= (1= BOX + BPi(x* — pe(x* = 1)),

C (0,11 and {p}; % C

(2.2)

where {Bi}T = [0, 2) are real

sequences.

Theorem 2.1. Let {x*} be the sequence generated by Algorithm 2.1.
If
(i) lle* || =< nkIIX" — Y¥|| for mi = O with Y 22 nf < +o0;
(ii) {/Sk % C [c, d] forsomec,d € (0, 1);
(iii) 0 < mszo Pk and supyq Px < 2;

then the infinite sequence {x} converges weakly to a solution of
Problem (1.1).

Proof. Suppose that x* € J# is a solution of Problem (1.1), then
we have 0 € M(x*). We divide the proof of Theorem 2.1 into three
steps.

Step 1. We show that {x*} is bounded. From (2.1), it follows that

1
— &=y + e e Moh.
)\k
By the monotonicity of M, we deduce that
1
<O _ 7(Xk _yk + ek), x* _yk> Z 0’
)\k
which leads to
xXeK={zeH: )y < 0).
Let th = Pe(x* — pp(x* — ¥%)), we deduce that
(t — (& — o =y, x* —t¥) > 0,
and
Ix* = 4] < | —x*) = e =y 17
= |Ix* = x| + pZ X — y¥|I?
+2pp(x* — X, % — yk)
= |lx* —X|* — pe(2 — p) X" — y¥|I?
+ 2 (%" — y*, X =)

Ix* — X|1> = pe(2 — pO)lIX* =y
+2p (% — x*, ).

—yk—i—ek,z—yk

IA

kyj2
l

Since limy_. o gy = O, there exists kg > 0 such that 2, <
2—sup pi 2-p

< = k for all k > k.

From

200y —x*, €)= 20k (yF — X, €F) + 200 (X — X, )

4peng
e A e el L
— Pk
P2 — px)
+ 72||ek||2
4n;,
ok(2 = o)
= <% + 2mepx ) 11XE = yH1?
4/0/(77]% « k2
+— ¥ =X
2 — pk

we have that, for all k > kg,

4
|W—ﬁWsQ+ W“)w-mﬁ
Pk

k(2 — o)
— K — Y2

2.3
5 (2.3)
Therefore, for all k > ko,
[x* — X112 = (1 = B (x* — x5 + Be(x* — 9|
= (1-Bollx* — x> + Bellx* — ||
— (1= B Bellx — ¢
< I =212 + B ””n*—%w
k
ok (2 = px)
—m————w%—fm
4d
< -2+ pWWx — X2
k
cor(2 — pk)
e PaTal [ (2.4)
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