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Wepresent the first exact approach to separate tightmetric inequalities for theNetwork Loading problem.
We give a bilevel programming formulation for the separation problem, develop an algorithm based on
the proposed formulation and discuss computational results.
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1. Introduction

The Network Loading Problem (NL) can be defined as follows.
Given a graph with edge capacity installation costs and a set of
traffic demands, chooseminimum cost integer capacities such that
all the demands can be routed simultaneously on the network. If
each demand is restricted to follow a single path, then the flows
are said to be unsplittable, otherwise they are called splittable. Let
us consider splittable flows, let G(V , E) be an undirected graph and
let D be the set of traffic demands (commodities). Without loss
of generality, the commodities can be defined as follows [5]: each
commodity k has a single source sk and multiple destinations. For
every node i, dki ≥ 0 is the amount to be sent from sk to i. Let xe
be an integer variable representing the capacity installed on edge e
and let f kij and f kji be continuous variables representing the flow for
commodity k directed from i to j and vice versa on edge e = (i, j).
Let N(i) = {j ∈ V : (i, j) ∈ E} be the neighborhood of node i. The
flow formulation of the problem is the following.

(FF) min

e∈E

cexe
j∈N(i)

(f kij − f kji ) = −dki i ∈ V , k ∈ D, i ≠ sk (1)


k∈D

(f kij + f kji ) ≤ xe e = (i, j) ∈ E (2)

f , x ≥ 0, x ∈ Z|E|.

Constraints (1) ensure that the demands are satisfied. Constraints
(2) guarantee that the installed capacity supports the flow. Since
flows are splittable, the problem can also be formulated using
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only capacity variables. For the formal derivation of the capacity
formulation, see for example [3,5].

Definition 1.1. A function µ : E → R is a metric on G if and only
if: (i)µe ≥ 0 for all e ∈ E; (ii)µe ≤ µ(Pe) for all e ∈ E, whereµ(Pe)
is the length of shortest path Pe between the endpoints of edge e
using µ as edge weights.

Let MetE be the cone generated by all metrics on G, the capacity
formulation of the problem is the following.

(CF) min

e∈E

cexe
e∈E

µexe ≥


k∈D


i∈V

π
µ

sk i
dki µ ∈ MetE (3)

x ∈ Z|E|

+ .

Value π
µ

ski
is the length of the shortest path from sk to i using µ

as edge weights. Inequalities (3) are known as metric inequalities
[15,21]. It is sufficient to consider only integer metrics [5]. For
integer metrics the right-hand-side of (3) can be rounded,
obtaining the rounded metric inequalities (4).
e∈E

µexe ≥


k∈D


i∈V

π
µ

ski
dki


µ ∈ MetE and integer. (4)

Rounded metric inequalities with binary coefficients are known
as {0, 1}-rounded metrics [3]. A special class of {0, 1}-rounded
metrics are the well known cut inequalities, for which conditions
to be facet defining are known [17,18]. For undirected graphs, the
cut metric is obtained partitioning the nodes into {S: V \ S} and
setting µij = 1 if i and j are in different subsets of the partition and
zero otherwise; for directed graphs µij = 1 if i ∈ S, j ∈ V \ S and
zero otherwise.

Many contributions can be found in the literature for the NL
problem and exact and heuristic approaches have been used.
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Heuristic approaches are proposed in [11,12]. In [4] cut inequali-
ties are used to develop a branch-and-cut algorithm. Extending re-
sults in [2], cut based inequalities for the flow formulation are used
in [23]. A branch-and-bound based on a Lagrangian relaxation is
presented in [14]. In [5] the authors compare the flow and the ca-
pacity formulation and develop cutting plane algorithms. Results
for the flow formulation are given in [13]. Facet defining inequal-
ities are presented in [1]. Capacity formulations based on metric
inequalities are used in [7,10,19,20]. In [3] the authors introduce
the tight metric inequalities, showing that they completely describe
the convex hull of integer feasible solutions of the capacity formu-
lation of the problem, and presenting a heuristic approach to sepa-
rate them. No exact separation algorithm is known in the literature
for such inequalities so far.

The aim of this paper is to present the first exact algorithm for
separating the tight metric inequalities. The discussion is made for
undirected graphs, but the results can be transferred without loss
of generality to directed ones. The rest of the paper is structured
as follows: in Section 2 the tight metric inequalities and the sep-
aration algorithm are presented, in Section 3 implementation de-
tails are given, in Section 4 the results obtained using the proposed
method on a set of problems derived from real-life instances are
discussed.

2. Tight metric inequalities

Let NL(G,D) be the convex hull of integer feasible solutions of
the capacity formulation (CF), the following result holds.

Theorem 2.1 ([3]). If aT x ≥ b is valid for NL(G,D), then there exists
µ ∈ MetE such that µT x ≥ b is valid and µe ≤ ae for all e ∈ E.

As a consequence, we can restrict to valid inequalities with metric
coefficients. Once µ is chosen, the quality of the corresponding
inequality depends on the right-hand-side b. The best possible
right-hand-side for a given µ can be computed as Rµ = min{µT x :

x ∈ NL(G,D)}. Inequalities (5) are called tightmetric inequalities [3].
e∈E

µexe ≥ Rµ µ ∈ MetE . (5)

Since every constraint µT x ≥ b is dominated by µT x ≥ Rµ, all
facet defining inequalities are tight metric inequalities. If µ is an
extreme ray of the metric cone, then Theorem 2.2 provides a way
to compute Rµ.

Theorem 2.2 ([3]). If µ is an integer valued extreme ray of the
metric cone having greatest common divisor equal to one, then Rµ =

⌈


k∈D


i∈V π
µ

ski
dki ⌉.

Therefore, roundedmetric inequalities defined using extreme rays
of the metric cone are tight metrics. Unfortunately, using extreme
rays of the metric cone is neither a necessary nor a sufficient
condition for obtaining facet defining inequalities. Let G be the
complete undirected graph on three nodes and let the demands
D be d12 = d13 = d23 = 1.2. Inequality x12 + x13 + x23 ≥ 5 is
facet defining, although the correspondingmetricµ is not extreme
(it can be obtained as the conic combination of the cut metrics
induced by partitions {{1}:{2, 3}}, {{2}:{1, 3}}, {{3}:{1, 2}}, with
all coefficients equal to 1/2). Let us consider the same graph, but
a different set of demands D̄ having d̄12 = 1, d̄13 = d̄23 = 0.
Inequality x13 + x23 ≥ 0, corresponding to the metric induced by
the cut {{1, 2}:{3}}, is not facet defining (it is dominated by non-
negativity constraints), although the metric is extreme (both sets
are connected). Tight metric inequalities are stronger than both
metrics and rounded metrics. Consider again G and D as defined
above andmetricµij = 1 for all i, j ∈ V . The right-hand-side of the
metric inequality corresponding toµ is 3.6, the one for the rounded
metric is 4, but Rµ = 5.

2.1. Separating tight metric inequalities

Given a capacity vector x̄, the separation problem for tight
metric inequalities can be stated as follows.

Definition 2.3. Find either an inequality


e∈E µex ≥ Rµ, µ ∈

MetE violated by x̄ or conclude that none exists.

Since Rµ is the solution of a NL problem having µ as objective
coefficients, even computing Rµ when µ is already provided is
difficult [3]. Following [16], the separation problem for tight
metric inequalities can be formulated as the bilevel programming
problem (sepT ). Bilevel programming is used to model problems
where two players (leader and follower), each of them controlling
a subset of the variables, are involved. For details on bilevel
programming, see [6,8].

(sepT ) min

e∈E

x̄eµe − Rµ

0 ≤ µe ≤ U e ∈ E (6)

(subsepT ) Rµ = min

e∈E

µeye
j∈N(i)

(f kij − f kji ) = −dki i ∈ V , k ∈ D, i ≠ sk
k∈D

(f kij + f kji ) ≤ ye e = (i, j) ∈ E

f ≥ 0, y ∈ Z|E|

+ .

Since (sepT ) is a minimization problem, it is not needed, in
principle, to require that µ ∈ MetE (see Theorem 2.1). Constraint
(6) is used to prevent unboundedness. Subproblem (subsepT ) is the
flow formulation of the NL problem for G and Dwithµ as objective
coefficients, that is used to compute Rµ.

Suppose to partition the edges into {Y :E\Y }. Ifwe relax the inte-
grality requirements in (subsepT ) for the y variables corresponding
to edges not belonging to Y , instead of Rµ a lower bound β on Rµ

is computed. Since β ≤ Rµ, inequalities (7) are valid, and we call
them quasi tight metric inequalities.
e∈E

µexe ≥ β. (7)

The quality of the bound β (and of the corresponding quasi tight
metric) depends on Y . If Y = E, quasi tight metrics are tight met-
rics. If Y = ∅, quasi tight metrics are metric inequalities. In fact,
if no capacity is required to be integer, the optimal capacities for
the subproblem can be obtained routing each demand dki on the
shortest path from sk to i using µ as weights and installing on ev-
ery edge e a capacity equal to the sum of the demands routed on
e. Hence β =


k∈D


i∈V π

µ

ski
dki and the bilevel problem can be

rewritten as a single level linear programming problem, obtaining
the separation problem for metric inequalities.

If µ is integer, quasi tight metric inequalities (7) can be
strengthened by rounding β , obtaining the rounded quasi tight
metric inequalities (8).
e∈E

µexe ≥ ⌈β⌉ . (8)

Rounded quasi tight metric inequalities can be separated solving
(sepR).

(sepR) min

e∈E

x̄eµe − z

z < β + 1 (9)
0 ≤ µe ≤ U e ∈ E
z ∈ Z, µ ∈ Z|E|
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