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a b s t r a c t

An iterative method is proposed for the K facilities location problem. The problem is relaxed using
probabilistic assignments, depending on the distances to the facilities. The probabilities, that decompose
the problem into K single-facility location problems, are updated at each iteration together with the
facility locations. The proposed method is a natural generalization of the Weiszfeld method to several
facilities.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Fermat–Weber location problem (also single-facility lo-
cation problem) is to locate a facility that will serve optimally
a set of customers, given by their locations and weights, in the
sense of minimizing the weighted sum of distances traveled by the
customers. A well known method for solving the problem is the
Weiszfeldmethod [30], a gradient method that expresses and up-
dates the sought center as a convex combination of the data points.
The multi-facility location problem (MFLP) is to locate a

(given) number of facilities to serve the customers as above. Each
customer is assigned to a single facility, and the problem (also
called the location–allocation problem) is to determine the op-
timal locations of the facilities, as well as the optimal assignments
of customers (assignment is absent in the single-facility case.)
MFLP is NP hard, [26].We relax it by replacing rigid assignments

with probabilistic assignments, as in [4,3] and [8]. This allows a
decomposition of MFLP into single-facility location problems, cou-
pled by the membership probabilities that are updated at each it-
eration.

2. The problem

Notation. 1, K := {1, 2, . . . , K}. ‖x‖ denotes the Euclidean norm
of a vector x ∈ Rn. The Euclidean distance d(x, y) = ‖x − y‖ is
used throughout.
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Let X := {xi : i ∈ 1,N} be a set of N data points in Rn, with
givenweights {wi > 0 : i ∈ 1,N}. Typically, the points {xi} are the
locations of customers, the weights {wi} are their demands.
Given an integer 1 ≤ K < N , theMFLP is to locate K facilities,

and assign each customer to one facility, so as tominimize the sum
of weighted distances

min
c1,c2,...,cK

K∑
k=1

∑
xi∈Ck

wi d(xi, ck) (L.K )

where {ck} are the locations (or centers) of the facilities, andCk is
the cluster of customers that are assigned to the kth facility.
For K = 1, one gets the Fermat–Weber location problem:

givenX and {wi : i ∈ 1,N} as above, find a point c ∈ Rnminimizing
the sum of weighted distances,

min
c∈Rn

N∑
i=1

wi d(xi, c), (L.1)

see [12,23,24,31] and their references.
If the points {xi} are not collinear, as is assumed throughout, the

objective function of (L.1)

f (c) =
N∑
i=1

wi d(xi, c) (1)

is strictly convex, and (L.1) has a unique optimal solution.
The gradient of (1) is undefined if c coincides with one of the

data points {xi}. For c 6∈ X,

∇f (c) = −
N∑
i=1

wi
xi − c
‖xi − c‖

, (2)
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and the optimal center c∗, if not in X, is characterized by∇f (c∗) =
0, expressing it as a convex combination of the points xi,

c∗ =
N∑
i=1

λi xi, with weights λi

=
wi/‖xi − c∗‖

N∑
m=1

wm/‖xm − c∗‖
that depend on c∗.

This circular result gives rise to theWeiszfeld iteration, [30],
c+ := T (c) (3)
where c+ is the updated center, c is the current center, and

T (c) :=


N∑
i=1

 wi/‖xi − c‖
N∑
m=1

wm/‖xm − c‖

 xi, if c 6∈ X;

c, if c ∈ X.

(4)

In order to extend ∇f (c) to all c, Kuhn [21] modified it as follows:
∇f (c) := −R(c), where

R(c) :=


−∇f (c), if c 6∈ X;

max {0, ‖Rj‖ − wj}
Rj

‖Rj‖
, if c = xj ∈ X,

(5)

where Rj :=
∑
i6=j

wi

‖xi − xj‖
(xi − xj) (6)

is the resultant force ofN−1 forces ofmagnitudewi and direction
xi − xj, i 6= j. The following properties of the mappings R(·), T (·),
the optimal center c∗ and any point xj ∈ X were proved by
Kuhn [21]:

c = c∗ ⇐⇒ R(c) = 0. (7a)

c∗ ∈ convX (the convex hull of X). (7b)
If c = c∗ then T (c) = c. Conversely, if c 6∈ X,
T (c) = c then c = c∗. (7c)

If T (c) 6= c then f (T (c)) < f (c). (7d)

xj = c∗ ⇐⇒ wj ≥ ‖Rj‖. (7e)
If xj 6= c∗,

the direction of steepest descent of f at xj is Rj/‖Rj‖. (7f)
If xj 6= c∗ there exists δ > 0 such that

0 < ‖c− xj‖ H⇒ ‖T s(c)− xj‖ > δ for some s. (7g)

lim
c→xj

‖T (c)− xj‖
‖c− xj‖

=
‖Rj‖
wj

. (7h)

For any c0, if no cr := T r(c0) ∈ X, then lim
r→∞

cr = c∗. (7i)

These results are generalized in Theorem 1 to the case of several
facilities.

Remark 1. Another claim in [21], that
T r(c0)→ c∗

for all but a denumerable number of initial centers c0,
was refuted by Chandrasekaran and Tamir [6]. Convergence can be
assured by modifying the algorithm (3) and (4) at a non-optimal
center that coincideswith a data point xj. Balas andYu [1] proposed
moving from xj in the direction Rj (6) of steepest descent, assuring
a decrease of the objective, and non-return to xj by (7c) and (7d).
Vardi and Zhang [29] guaranteed exit from xj by augmenting the
objective function with a quadratic of the distances to the other
data points. Convergence was also addressed by Ostresh [27], Eck-
hardt [13], Drezner [11], Brimberg [5], Beck et al. [2], and others.

3. Probabilistic assignments

For 1 < K < N , the problem (L.K ) is NP hard, [26]. It can be
solved polynomially inN for K = 2, see [10], and possibly for other
given K .
We relax the problem by using probabilistic (or soft) assign-

ments, with cluster membership probabilities,

pk(x) := Prob {x ∈ Ck}, k ∈ 1, K ,

assumed to depend only on the distances {d(x, ck) : k ∈ 1, K} of
the point x from the K centers. A reasonable assumption is

assignment to a facility is more probable the closer it is (A)

and a simple way to model it,

pk(x) d(x, ck) =
1
w
D(x), k ∈ 1, K , (8)

wherew is the weight of x, and D(·) is a function of x, that does not
depend on k. There are other ways to model assumption (A), but
(8) works well enough for our purposes.
Model (8) expresses probabilities in terms of distances, display-

ing neutrality among facilities in the sense of the Choice Axiom of
Luce, [25, Axiom 1], see [19, Appendix A]. Other issues such as at-
tractiveness, introduced in the Huff model [15,16], see also [9], are
ignored.
Using the fact that probabilities add to one, we get from (8),

pk(x) =
1/d(x, ck)
K∑̀
=1
1/d(x, c`)

=

∏
j6=k
d(x, cj)

K∑̀
=1

∏
m6=`
d(x, cm)

, k ∈ 1, K , (9)

interpreted as pk(x) = 1 if d(x, ck) = 0, i.e., x = ck. In the special
case K = 2,

p1(x) =
d(x, c2)

d(x, c1)+ d(x, c2)
,

p2(x) =
d(x, c1)

d(x, c1)+ d(x, c2)
.

(10)

From (8), we similarly get

D(x)
w
=

K∏
j=1
d(x, cj)

K∑̀
=1

∏
m6=`
d(x, cm)

, (11)

which is (up to a constant) the harmonic mean of the distances
{d(x, cj) : j ∈ 1, K}. In particular,

D(x) = w
d(x, c1)d(x, c2)
d(x, c1)+ d(x, c2)

, for K = 2. (12)

The function (11) is called the joint distance function (JDF)
at x.
Abbreviating pk(x) by pk, Eq. (8) is an optimality condition for

the extremum problem

min

{
w

K∑
k=1

p2k d(x, ck) :
K∑
k=1

pk = 1, pk ≥ 0, k ∈ 1, K

}
(13)

with variables {pk}. The squares of probabilities in (13) are ex-
plained as a device for smoothing the underlying objective, min
{‖x− ck‖ : k ∈ 1, K}, see the seminal article by Teboulle [28].
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