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Abstract

In a discrete-time delayed renewal process, we study the distribution of the number of renewals during a random interval.
We obtain closed-form expressions for the probability mass function and binomial moments of this number for various
distributions of the random interval and interrenewal times.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with counting the number of
renewals in a discrete-time random interval. Let N(n)

be the number of renewals in a fixed discrete-time in-
terval (0, n], where n is a positive integer. The interre-
newal times occur according to a sequence of discrete
random variables {X1, X2, . . . , Xi, . . .}, where X1 is
started at time 0. Let T be a random variable repre-
senting a discrete-time interval, which is independent
of {X1, X2, . . . , Xi, . . .}. Hence N(T ) is a random
variable which represents the number of renewals oc-
curring in the random interval (0, T ]. For the sake of
convenience, we call T a session time in this paper.
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The problem of finding the probability distribu-
tion of N(T ) in the continuous-time setting has been
treated for several specific cases by Cox in his mono-
graph [3, p. 42] under the title “the number of renewals
in a random time.” Most of the results presented by
Cox are based on the ordinary renewal process, i.e., all
the random variables Xi, i = 1, 2, . . . come from the
same distribution [3, p. 25]. Thus it is more general to
consider the case in which Xi, i =2, 3, . . . come from
the same distribution as X2 while only X1 may come
from a different distribution. Such a case is called the
delayed renewal process [3, p. 28]. As a special case
of the delayed renewal process, if X1 is a residual life
of X2, we have the equilibrium renewal process [3,
p. 28]. These are the three types of renewal processes
introduced by Cox, and often considered by others
subsequently. However, as a further generalization of
the delayed renewal process, we may assume that each
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interrenewal time X1, X2, . . . can have a different
distribution. The authors have extended Cox’s treat-
ment of counting the number of renewals in a ran-
dom time interval to these general delayed renewal
processes, with special application to the calcula-
tion of the number of handovers during a conver-
sational session in cellular mobile communication
networks [7,8].

The discrete-time renewal process is dealt with in
several textbooks, including [4,5], where it is called
the recurrent event process. They present a theory for
counting the number of renewals in a fixed time in-
terval. As an application, Koutras [6] discusses the
number of appearances of a specific pattern in a fixed
number of repeated trials. More applications of this
type can be found in [1]. However, none of these stud-
ies has considered the number of renewals in a random
time interval. Such occasions arise in many cases. For
example, in a digital communication system, a session
of transmitting a long message such as file download-
ing from a web site may be segmented into several
packets based on the Internet Protocol. In this case,
the number of packets in a message can be counted
by using the present model. Since each packet needs
its own header and trailer, it is necessary to know the
number of packets generated from this session in or-
der to calculate the total transmission time. A classic
example of handling a special pattern in the bit se-
quence is the bit stuffing in the High-level Data Link
Control (HDLC) protocol [2, p. 88]. A 0 is stuffed af-
ter each consecutive five 1’s within a frame in order
to avoid confusion with the flag, 01111110, indicat-
ing the end of the frame. Our model can be used to
find the number of stuffed 0’s in a frame of random
length.

2. General session time and general interrenewal
times in a delayed renewal process

In Sections 2–4, we assume a delayed renewal pro-
cess, i.e., a sequence of interrenewal times {Xi; i =
1, 2, . . .} such that Xi, i=2, 3, . . . come from the same
distribution as X2. In this section, we present a frame-
work for handling the case in which the session time
T and the interrenewal times X1 and X2 have general
distributions, respectively.

Let us define the sum of m interrenewal times
{X1, X2, . . . , Xm} as

Sm :=
m∑

i=1

Xi, m = 1, 2, . . .

and let S0 : =0. Let N(n) be a random variable rep-
resenting the number of renewals in a fixed interval
(0, n], where n is a positive integer. Thus, the event
{N(n)�m} is equivalent to the event {Sm �n}, i.e., the
number of renewals by time n inclusive is not fewer
than m if and only if the mth renewal occurs before or
at time n. Thus we have

P [N(n) = m] = P [N(n)�m] − P [N(n)�m + 1]
= P [Sm �n] − P [Sm+1 �n].

Hence

P [N(n) = m] = FSm(n) − FSm+1(n),

m = 0, 1, 2, . . . , (1)

where FSm(n) := P [Sm �n] is the cumulative distri-
bution function (cdf) of the random variable Sm. Note
that FS0(n) ≡ 1. We define the probability generating
function (pgf) for N(n) as

GN(T )(n, z) :=
∞∑

m=0

P [N(n) = m]zm, |z|�1. (2)

Substituting (1) into (2), we get

GN(T )(n, z) = 1 + (z − 1)

∞∑
m=1

FSm(n)zm−1. (3)

Now, let us define the following generating
function:

G∗
N(T )(y, z) :=

∞∑
n=1

GN(T )(n, z)yn, |y| < 1. (4)

From (3) and (4) we have

G∗
N(T )(y, z) = y

1 − y
+ (z − 1)

∞∑
m=1

zm−1

×
∞∑

n=1

FSm(n)yn. (5)
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