Operations Research Letters 39 (2011) 423-427

journal homepage: www.elsevier.com/locate/orl

Contents lists available at SciVerse ScienceDirect

Operations Research Letters

Operations
Research
Letters

An improved monotone algorithm for scheduling related machines with

precedence constraints

Anke van Zuylen

Max Planck Institute for Informatics, Campus E 1 4, 66123 Saarbriicken, Germany

ARTICLE INFO ABSTRACT

Artic{e history: We answer an open question posed by Krumke et al. (2008) [6] by showing how to turn the algorithm
Received 17 July 2009 of Chekuri and Bender for scheduling related machines with precedence constraints into an O(log m)-
Accepted 28 July 2011

Available online 5 August 2011

Keywords:

Scheduling

Algorithmic mechanism design
Precedence constraints
Monotone algorithms

approximation algorithm that is monotone in expectation. This significantly improves on the previously
best known monotone approximation algorithms for this problem, from Krumke et al. [6] and Thielen and
Krumke (2008) [8], which have an approximation guarantee of 0(m?/?).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of scheduling jobs on
related machines when the machines are controlled by selfish
agents.

The classical version of the problem, in which the machines
are not controlled by selfish agents, is called Q |prec|Cpax in the
notation introduced by Graham et al. [4]. We are given a set of n
jobs with processing times p1, ..., pp, precedence constraints on
the jobs in the form of a partial order, and m machines with speeds
S1,...,Sm.Ifjobjis processed on machine i, it takes p;/s; time units
to process. A schedule is an assignment of jobs to machines, plus a
starting time for each job, so that a job starts after all jobs that must
precede it have been processed, and a machine works on only one
jobat a time. The goal is to minimize the makespan of the schedule,
i.e. the finishing time of the last job.

Motivated by applications on the Internet, in recent years
researchers have considered scheduling problems in which the
machines are controlled by selfish agents. In our setting, this means
that we do not know the speeds of the machines. Our goal is
to design a mechanism which asks the agents for their speeds,
assigns the jobs to the agents so as to minimize the makespan,
and computes payments to pay each agent. Each agent, on the
other hand, is trying to maximize her profit, which is equal to
the payment received minus the time it takes to process the jobs
assigned to the agent. Hence, agents may choose to misrepresent
their speed. A truthful mechanism is a mechanism in which
reporting the true speed is a dominant strategy for each agent,

E-mail address: anke@mpi-inf.mpg.de.

0167-6377/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.0r1.2011.07.009

i.e. no matter what the speeds are that are reported by the other
agents, the strategy which yields the maximum profit for a given
agent is to report its true speed.

The problem that we consider belongs to the class of mecha-
nism design problems for one-parameter agents. For a problem in
this class, there are m agents, and each agent i holds some piece of
private data consisting of a single parameter t; € R>,. All other in-
putis public knowledge. The vector t = (ty, ..., t;,) combined with
the rest of the input defines a (classical) optimization problem, for
which a feasible solution takes the form of a set of loads w;(t) to
be assigned to the agents. A mechanism for a problem in this class
solicits a bid b; from each agent, and based on b = (b, ..., by),
it computes feasible loads w;(b) and payments p;(b) for agents
i =1,...,m.The goal of agent i is to maximize profit; = p;(b) —
wi(b)t;. Let b_; be the bids of the other agents, and let b = (b_, b;)
denote the vector containing all bids. The mechanism is truthful if
for each agent i, reporting her true private value t; dominates any
other bid b;, i.e., profit;(b_;, t;) > profit;(b_;, b;), for all b_;, b;.

It was shown by Archer and Tardos [1] that a necessary
and sufficient condition for obtaining a truthful mechanism for
this class of mechanism design problems is to have a monotone
algorithm for the underlying problem, in which t is part of the
known input. An algorithm is monotone if w;(t_;, t;) is a non-
increasing function of t;. Given such an algorithm, Archer and
Tardos show how to compute payments that induce truth telling.
In our setting, an agent’s private information is t; = % and a
monotone algorithm means that the amount of work assigned
to a machine should not increase if the speed of the machine
is decreased (and all other input remains the same). Since the
problem Q |prec|Cnax is NP-hard, we are concerned with finding
monotone approximation algorithms for Q |prec|Cpax. Combined

http://dx.doi.org/10.1016/j.orl.2011.07.009
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:anke@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.orl.2011.07.009

424 A. van Zuylen / Operations Research Letters 39 (2011) 423-427

with the payment scheme of [1], a monotone «-approximation
algorithm results in a truthful mechanism that finds a schedule
with makespan at most « times optimal.

The problem of finding a monotone approximation algorithm
for Q|prec|Cnax was first considered by Krumke et al. [6]. They
showed how to turn an O(/m)-approximation algorithm of
Jaffe [5] into a monotone O(m?/3)-approximation algorithm. Their
approach was generalized by Thielen and Krumke [8] to a general
scheme for designing monotone algorithms. Their scheme also
yields a monotone algorithm for the problem Q|prec, 1j|Cnax, in
which the existence of a job j is unknown until its release time
rj. The best known (not necessarily monotone) approximation
algorithms for Q|prec|Cnax and Q|prec, rj|Cnax are O(logm)-
approximation algorithms of Chekuri and Bender [2] and Chudak
and Shmoys [3]. An open question posed by Krumke et al. [6] is
whether one can get better monotone approximation algorithms
using these approaches.

In this paper, we slightly weaken the monotonicity requirement
and answer the question of Krumke et al. affirmatively under
this weakened definition. In particular, we show that a slightly
modified and randomized version of the algorithm of Chekuri
and Bender [2] is an O(log m)-approximation algorithm that is
monotone in expectation: the expected amount of work assigned
to a machine does not increase if the machine’s speed is
decreased. Using the result of Archer and Tardos [1], this implies
a mechanism that is truthful in expectation: an agent cannot
improve its expected payoff by being untruthful. Using a result of
Shmoys et al. [7], it is straightforward to extend our approach to
Qlprec, 1j]Cmax and obtain an O(log m)-approximation algorithm
that is monotone in expectation.

2. The problem definition

In the problem Q|prec|Cnax, We are given a set of n jobs
with processing times pq, ..., ps, precedence constraints on the
jobs in the form of a partial order <, and machines with speeds
{S1,...,sm}. If job j is processed on machine i, it takes p;/s; time
units to process. A schedule is an assignment of jobs to machines,
plus a starting time for each job, so that a job k starts after all jobs
j such that j < k have been processed, and a machine works on
only one job at a time. We assume without loss of generality that
Sy > S > --- > su,. The makespan of a schedule is the time
when the last job is finished. We will denote by C};., the minimum
makespan over all feasible schedules.

We define the amount of work assigned to machine i as the sum
of p; over all jobs j that are assigned to machine i. An algorithm
for Q |prec|Cnax is monotone if the following holds: if we consider
two instances that are identical except for the speed of machine i,
which is s in the first instance and s’ > s in the second instance,
then the amount of work assigned to machine i in the schedule
produced for the second instance is not smaller than the amount of
work assigned to it in the first schedule. A randomized algorithm is
monotone in expectation if the expected amount of work assigned
to machineiin the second instance is not smaller than the expected
amount of work assigned to it in the first schedule.

The problem Q |prec, 1j|Cnay is defined similarly to Q [prec|Cmax,
except that the existence of a job is not known until the time r;
when it is released.

3. The Chekuri-Bender algorithm

We begin by describing the algorithm proposed by Chekuri and
Bender [2]. We will need to make only a few changes to achieve
monotonicity, which we will describe in the next section.

The algorithm of Chekuri and Bender [2] begins by computing a
lower bound B on the makespan of any feasible schedule. To do so,
they find a maximal chain decomposition of the jobs: a chain P is

a subset of jobs ji, ..., jk such that j; < jiq foralli € {1,...,
k — 1}. The length of P is denoted by |[P| = Zf:] pj;- A chain
decomposition is a partition of the precedence order into an
ordered collection of chains (P, ..., P;) such that Py is a longest
chain and (P,, ..., P;) is a maximal chain decomposition with
the jobs in P; removed. If we consider the first k chains in the
chain decomposition, then at any point in time at most k different
machines are working on the jobs in these chains. The total speed
of these k machines is at most Zf‘:l s; where we recall that speeds
are assumed to be ordered so thats; > s;;1. Hence there must be
i Ipl

:'(=1 Si
This observation gives rise to the following lower bound on the
makespan:

some job in these k chains which completes at or later.

n k
X; pj > IRy
j= i=1 .
B=max{ —— max <C. ...
m - {<k<min{r,m) k - max
DS Yosi
i=1 i=1

The Chekuri-Bender algorithm uses an idea of Chudak and
Shmoys [3] to reduce an instance with an arbitrary number of
speeds to an instance with only K = O(log m) speeds while losing
only a constant factor in the approximation ratio: ignore machines
with speed less than % times the speed of the fastest machine,
and divide the remaining machine speeds into speed classes, by
rounding down all speeds to the nearest power of 2.

Let 51, ..., Sk be the remaining distinct speeds. The algorithm
iterates through the chains in the maximal chain decomposition
and assigns them to the speed classes. See Fig. 1 for a description
of the algorithm Chain-Alloc that allocates the chains. For a given
assignment, let k(j) be the speed class that (the chain containing)
job j is assigned to. Given the output of Chain-Alloc, the jobs are
scheduled according to speed-based list scheduling [3]: if a job j
is available and there is a free machine i such that machine i is in
speed class k(j), then schedule job j on machine i.

We repeat a key point in the analysis by Chekuri and Bender,
which we will be using in the next section to show monotonicity.
The following lemma is (contained in) Lemma 2 in [2].

Lemma 1 (Chekuri and Bender [2]). Let Py, . .., Pr be the chains
remaining when Chain-Alloc considers speed k. Then |Py|/Sk < 2B.

4. A monotone algorithm

Recall that our goal is to show that if a machine changes its
speed from s to s’ > s, then the amount of work assigned to it
does not decrease. We begin by analyzing the original Chekuri-
Bender algorithm. Our analysis will highlight certain cases in
which monotonicity is not guaranteed, and we show two small
adaptations which do ensure monotonicity.

Let m; be the number of machines with rounded speed s, and
define

1

mySy

Dy = Dj-
Jik()=k
We will assume that in the speed-based list scheduling phase of
the algorithm, all machines in one speed class are indistinguishable
for the algorithm. To be precise, we simulate the speed-based list
scheduling where all machines have speed equal to their true speed
rounded down to the nearest power of 2, and machines within
one speed class are considered in random order. This gives an
assignment of jobs to machines, plus a starting time for each job,
which is feasible for the real instance. The expected amount of
work assigned to a machine in speed class k is equal to D;5.

The following lemma allows us to bound the expected amount
of work assigned to a machine.

Download English Version:

https://daneshyari.com/en/article/1143248

Download Persian Version:

https://daneshyari.com/article/1143248

Daneshyari.com

https://daneshyari.com/en/article/1143248
https://daneshyari.com/article/1143248
https://daneshyari.com/

