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We provide a complete characterization of all polytopes P C [0, 1]" with empty integer hulls, whose
Gomory-Chvatal rank is n (and, therefore, maximal). In particular, we show that the first Gomory-Chvatal
closure of all these polytopes is identical.
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1. Introduction

The Gomory-Chvatal procedure is a well-known technique to
derive valid inequalities for the integral hull P; of a polyhedron
P = {x € R" | Ax < b}. It was introduced by Chvatal [2]
and, implicitly, by Gomory [6-8] as a means to establish certain
combinatorial properties via cutting-plane proofs. Cutting planes
and Gomory-Chvatal cuts, in particular, belong to today’s standard
toolbox in integer programming. However, despite significant
progress in recent years (see, e.g., [1,3,5,9]), the Gomory-Chvatal
procedure is still not fully understood from a theoretical stand-
point, especially in the context of polytopes contained in the
0/1-cube. For example, the question whether the currently best
known upper bound of O(n? logn) on the Gomory-Chvatal rank,
established in [5], is tight, remains open. In [5], it was also shown
that there is a class of polytopes contained in the n-dimensional
0/1-cube whose rank exceeds n. (See [11] for a more explicit con-
struction.) However, no family of polytopes in the 0/1-cube is
known that realizes super-linear rank, and thus there is a large
gap between the best known upper bound and the largest realized
rank.

We consider the special case of P C [0, 1]" with P, = 0
and Gomory-Chvatal rank rk(P) = n (i.e.,, maximal rank, as
rk(P) < n holds for all P < [0, 1]" with P, = @; see [1]).
This case is of particular interest as, so far, all known proofs of
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polynomial upper bounds on the rank of polytopes in the 0/1-cube
(cf., [1,5]) crucially depend on this special case. The improvement
from O(n® logn) in [1] to O(n? logn) in [5] as an upper bound on
the rank of polytopes in [0, 1]" is a direct consequence of a better
upper bound on the rank of certain polytopes in the 0/1-cube
that do not contain integral points. It can actually be shown that
lower bounds on the rank of polytopes P C [0, 1]" with P, = ¢
play a crucial role in understanding the rank of any (well-defined)
cutting-plane procedure [10]. Moreover, in many cases, the rank
of a face F C P with F; = ¢ induces a lower bound on the rank of
P itself. In fact, the construction of the aforementioned families of
polytopesin [0, 1]" whose rank s strictly larger than n exploits this
connection.

In view of this, a thorough understanding of the Gomory-
Chvatal rank of polytopes P C [0, 1]" with P, = @ might help
to derive better upper and lower bounds for the general case. In
this paper, we characterize all polytopes P C [0, 1]" withP, = (¢
and rk(P) = n. In particular, we show that after applying the
Gomory-Chvatal procedure once, one always obtains the same
polytope. Furthermore, we show that P C [0, 1]" with P, = ¢
has rk(P) = nifand only if PNF # ¢ for all one-dimensional faces
F of the 0/1-cube [0, 1]".

The paper is organized as follows. In Section 2, we introduce
our notation and recall some basic facts about the Gomory-Chvatal
procedure. Afterwards, in Section 3, we derive the characterization
of all polytopes P C [0, 1]" with P, = ¢ and rk(P) = n. In parti-
cular, in Section 3.2, we relate the rank of a polytope P C [0, 1]"
with P, = { to the rank of its faces. We then prove the charac-
terization for the two-dimensional case in Section 3.3, which is an
essential ingredient for the subsequent generalization to arbitrary
dimension in Section 3.4.
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2. Preliminaries

Let P = {x € R" | Ax < b} be a polytope with A € Z™" and
b € Z™. The Gomory-Chvdtal closure of P is defined as

Pl= [ f{x:aé < [2b)}.

A€RT, AA€ZN

The result P’ is again a polytope (see [2]), and one can apply the
operator iteratively. We let P4V .= (P®)' fori > 0 and P := P.
The resulting sequence {P"};~, becomes stationary after finitely
many steps [2], and the smallest k such that P**D = p® js
the Gomory-Chvdtal rank of P (in the following often rank of P),
denoted by rk(P). In particular, P®™®) = p;, where P; := conv(P N
Z") denotes the integral hull of P.

We will make repeated use of the following well-known
lemma:

Lemma 2.1 ([4, Lemma 6.33]). Let P be a rational polytope and let F
be a face of P. Then F' = P’ NF.

IfP C [0,1]" and P, = (J, Lemma 2.1 can be used to derive an
upper bound on rk(P).

Lemma 2.2 ([1, Lemma 3]). Let P € [0, 1]" be a polytope with
P; = (. Then rk(P) < n.

This bound is actually tight; a family of polytopes A, C [0, 1]" with
(Ap); = ¥ and rk(A,) = n was described in [3, p. 481].

Fori € [n], the i-th coordinate flip maps x; = 1—x; and x; — x;
for i # j. Another property that we will extensively use is that
the Gomory-Chvatal operator is commutative with unimodular
transformations, in particular, coordinate flips.

Lemma 2.3 ([5, Lemma 4.3]). Let P C [0, 1]" be a polytope and let
u be a coordinate flip. Then (u(P))’ = u(P’).

Given polytopes P C [0, 11", Q C [0, 1]%, and a k-dimensional
face F of [0, 1]", we say that P N F = Q if the canonical projection
of P N F onto [0, 1]* is equal to Q. We denote the interior of P
by Int(P) and, with P, F, and Q as before, the relative interior of
P with respect to F is defined as RIntz(P) := Int(Q). We use e to
denote the all-one vector, and %e to denote the all-one-half vector.
If1 C [n] x {0, 1}, 3¢’ has coordinates 5 e = 5 whenever (i, ) &1,
and %ef = Ifor (i, ) € I. Similarly, if F is a face of [0, 1]", we define
se" € F to be § in those coordinates not fixed by F. Moreover, we
define Fy to be the set of all vectors x € {0, 1, 1}" such that exactly
k coordinates are equal to % and the remaining coordinates are in
{0, 1}. For convenience, we use [n] := {1,...,n}forn € N.

3. Polytopes P C [0, 1]" with P; = @ and maximal rank

For n € N, we define the polytope B, C [0, 1]" by

Zx,-—i— Z (1—%;) = 1forallS C [n];.

B, = :x e [0, 1]"
ieS ie[n]\S

Note that, (B,); = @. This family of polytopes will be essential to
our subsequent discussion.

3.1. Properties of B,

In the following section, we will characterize BY¥ and show,
specifically, that B = {3€}. Moreover, we will show that
{0, 3}-cuts, i.e., Gomory-Chvatal cuts with A € {0, %}m suffice

to deduce (B,;); = ¢, and the rank with respect to the classical
Gomory-Chvatal procedure coincides with the rank if one were
to use {0, 3 }-cuts only. Clearly, with B, as above and F being a
k-dimensional face of [0, 1]", we have B, N F = By. As a direct
consequence of the proof of [3, Lemma 7.2] one obtains:

Lemma 3.1. Let P C [0, 1]" be a polytope with F, < P for some
k <n. ThenF..4 C P

Proof. We include a proof for completeness. Let P as above and let
ax < b+ 1witha € Z" and b € Z be valid for P. We have to show
that ap < b for every p € Fy11. Let p € Fy1 be arbitrary. If ap € Z,
we are done. So assume that ap ¢ Z. Then there existsi € [n] such
that a; # 0 and p; = 3. We define the points p°, p' by setting p{ =
p/ = pjforallj #i,p) = 0,and p] = 1.Hence,p = 5p° + 3p".
Note that, p°, p! € F, € P and, therefore, ap' < b + 1 holds for
I € {0, 1}. We derive ap + % < max{ap®, ap'} < b + 1 and thus
ap < b+ % Sinceap € %Z, it follows that ap < b, hencep € P’. As
the choice of p € Fy, 1 was arbitrary, we obtain F,,; CP’. O

Note that, F, € B,. Thus, by Lemma 3.1, we have:

Corollary 3.2. F, C B,(f‘_z).

The following theorem specifies a family of valid inequalities for
(k)
BY.

Theorem 3.3. Let B, be defined as above and k < n. Then

in—i—Z(l —x)>1

iel iel\I

is valid for BL") foralll C I € [n] with |T| = n — k. Moreover, these
inequalities can be derived as iterated {0, %}-Cuts.

Proof. The proof is by induction on k. First, let us look at the case
k = 0. By definition, > _;; xi + > ;7\, (1 — x;) > 1withl = [n] is
valid for B,. Now consider 0 < k_< n, and assume that the claim
holds for k — 1. Let I C [n] with |I| = n — k be arbitra~ry. We have
to prove that } ;. xi + > iy, (1 —x) > 1with I € [is valid for
B,(qk). Letlo =1 U {h} for some h ¢ I. Note that, such an h exists as
k > 0. Then

Xh+ZXi+Z(1_Xi)= ZXH- 1-x)=1
il Py ielU{h} iclo\(IU{h})
and
A=x)+) x+)y A=x)=) x+ ) (1-x)=1
iel iel\I iel ielp\I

are valid for B,(,'H), by induction hypothesis. By adding the two
inequalities, we obtain

2) xi+2) (1—x) =1

iel iel\l
and, therefore, Y i, xi + Yy, (1 — %) > [5] = 1is valid for
BY. O

We immediately obtain the following corollary.

Corollary 3.4. BV = {3e}.

Proof. First note that, %e € B,ﬂ"fz) by Corollary 3.2. By Theorem 3.3
we know that Ziel X; + Ziei\z(l —x;) > 1withI C I= {u,v} C1I
is valid for B,(qnfz), forany pairu, v € [n], u # v.Therefore x, +x, >
1a Xu + (1 _Xv) 2 1’ (1 _Xu) +xv > 1. and (1 _Xu)+ (1 _xv) Z 1

are valid for 31(1"72), which implies x, = x, = 2. O
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