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a b s t r a c t

We provide a complete characterization of all polytopes P ⊆ [0, 1]n with empty integer hulls, whose
Gomory–Chvátal rank is n (and, therefore,maximal). In particular, we show that the first Gomory–Chvátal
closure of all these polytopes is identical.
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1. Introduction

The Gomory–Chvátal procedure is a well-known technique to
derive valid inequalities for the integral hull PI of a polyhedron
P = {x ∈ Rn

| Ax ≤ b}. It was introduced by Chvátal [2]
and, implicitly, by Gomory [6–8] as a means to establish certain
combinatorial properties via cutting-plane proofs. Cutting planes
and Gomory–Chvátal cuts, in particular, belong to today’s standard
toolbox in integer programming. However, despite significant
progress in recent years (see, e.g., [1,3,5,9]), the Gomory–Chvátal
procedure is still not fully understood from a theoretical stand-
point, especially in the context of polytopes contained in the
0/1-cube. For example, the question whether the currently best
known upper bound of O(n2 log n) on the Gomory–Chvátal rank,
established in [5], is tight, remains open. In [5], it was also shown
that there is a class of polytopes contained in the n-dimensional
0/1-cube whose rank exceeds n. (See [11] for a more explicit con-
struction.) However, no family of polytopes in the 0/1-cube is
known that realizes super-linear rank, and thus there is a large
gap between the best known upper bound and the largest realized
rank.

We consider the special case of P ⊆ [0, 1]n with PI = ∅

and Gomory–Chvátal rank rk(P) = n (i.e., maximal rank, as
rk(P) ≤ n holds for all P ⊆ [0, 1]n with PI = ∅; see [1]).
This case is of particular interest as, so far, all known proofs of
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polynomial upper bounds on the rank of polytopes in the 0/1-cube
(cf., [1,5]) crucially depend on this special case. The improvement
from O(n3 log n) in [1] to O(n2 log n) in [5] as an upper bound on
the rank of polytopes in [0, 1]n is a direct consequence of a better
upper bound on the rank of certain polytopes in the 0/1-cube
that do not contain integral points. It can actually be shown that
lower bounds on the rank of polytopes P ⊆ [0, 1]n with PI = ∅

play a crucial role in understanding the rank of any (well-defined)
cutting-plane procedure [10]. Moreover, in many cases, the rank
of a face F ⊆ P with FI = ∅ induces a lower bound on the rank of
P itself. In fact, the construction of the aforementioned families of
polytopes in [0, 1]n whose rank is strictly larger than n exploits this
connection.

In view of this, a thorough understanding of the Gomory–
Chvátal rank of polytopes P ⊆ [0, 1]n with PI = ∅ might help
to derive better upper and lower bounds for the general case. In
this paper, we characterize all polytopes P ⊆ [0, 1]n with PI = ∅

and rk(P) = n. In particular, we show that after applying the
Gomory–Chvátal procedure once, one always obtains the same
polytope. Furthermore, we show that P ⊆ [0, 1]n with PI = ∅

has rk(P) = n if and only if P ∩F ≠ ∅ for all one-dimensional faces
F of the 0/1-cube [0, 1]n.

The paper is organized as follows. In Section 2, we introduce
our notation and recall some basic facts about the Gomory–Chvátal
procedure. Afterwards, in Section 3, we derive the characterization
of all polytopes P ⊆ [0, 1]n with PI = ∅ and rk(P) = n. In parti-
cular, in Section 3.2, we relate the rank of a polytope P ⊆ [0, 1]n
with PI = ∅ to the rank of its faces. We then prove the charac-
terization for the two-dimensional case in Section 3.3, which is an
essential ingredient for the subsequent generalization to arbitrary
dimension in Section 3.4.
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2. Preliminaries

Let P = {x ∈ Rn
| Ax ≤ b} be a polytope with A ∈ Zm×n and

b ∈ Zm. The Gomory–Chvátal closure of P is defined as

P ′
:=


λ∈Rm

+
,λA∈Zn

{x : λAx ≤ ⌊λb⌋}.

The result P ′ is again a polytope (see [2]), and one can apply the
operator iteratively. We let P (i+1)

:= (P (i))′ for i ≥ 0 and P (0)
:= P .

The resulting sequence {P (i)
}i≥0 becomes stationary after finitely

many steps [2], and the smallest k such that P (k+1)
= P (k) is

the Gomory–Chvátal rank of P (in the following often rank of P),
denoted by rk(P). In particular, P (rk(P))

= PI , where PI := conv(P ∩

Zn) denotes the integral hull of P .
We will make repeated use of the following well-known

lemma:

Lemma 2.1 ([4, Lemma 6.33]). Let P be a rational polytope and let F
be a face of P. Then F ′

= P ′
∩ F .

If P ⊆ [0, 1]n and PI = ∅, Lemma 2.1 can be used to derive an
upper bound on rk(P).

Lemma 2.2 ([1, Lemma 3]). Let P ⊆ [0, 1]n be a polytope with
PI = ∅. Then rk(P) ≤ n.

This bound is actually tight; a family of polytopes An ⊆ [0, 1]n with
(An)I = ∅ and rk(An) = nwas described in [3, p. 481].

For i ∈ [n], the i-th coordinate flipmaps xi → 1−xi and xj → xj
for i ≠ j. Another property that we will extensively use is that
the Gomory–Chvátal operator is commutative with unimodular
transformations, in particular, coordinate flips.

Lemma 2.3 ([5, Lemma 4.3]). Let P ⊆ [0, 1]n be a polytope and let
u be a coordinate flip. Then (u(P))′ = u(P ′).

Given polytopes P ⊆ [0, 1]n,Q ⊆ [0, 1]k, and a k-dimensional
face F of [0, 1]n, we say that P ∩ F ∼= Q if the canonical projection
of P ∩ F onto [0, 1]k is equal to Q . We denote the interior of P
by Int(P) and, with P, F , and Q as before, the relative interior of
P with respect to F is defined as RIntF (P) := Int(Q ). We use e to
denote the all-one vector, and 1

2 e to denote the all-one-half vector.
If I ⊆ [n]×{0, 1}, 1

2 e
I has coordinates 1

2 e
l
i =

1
2 whenever (i, l) ∉ I ,

and 1
2 e

I
i = l for (i, l) ∈ I . Similarly, if F is a face of [0, 1]n, we define

1
2 e

F
∈ F to be 1

2 in those coordinates not fixed by F . Moreover, we
define Fk to be the set of all vectors x ∈


0, 1

2 , 1
n

such that exactly
k coordinates are equal to 1

2 , and the remaining coordinates are in
{0, 1}. For convenience, we use [n] := {1, . . . , n} for n ∈ N.

3. Polytopes P ⊆ [0, 1]n with PI = ∅ and maximal rank

For n ∈ N, we define the polytope Bn ⊆ [0, 1]n by

Bn :=


x ∈ [0, 1]n

−
i∈S

xi +
−

i∈[n]\S

(1 − xi) ≥ 1 for all S ⊆ [n]


.

Note that, (Bn)I = ∅. This family of polytopes will be essential to
our subsequent discussion.

3.1. Properties of Bn

In the following section, we will characterize B(k)
n and show,

specifically, that B(n−2)
n =

 1
2 e


. Moreover, we will show that

0, 1
2


-cuts, i.e., Gomory–Chvátal cuts with λ ∈


0, 1

2

m
, suffice

to deduce (Bn)I = ∅, and the rank with respect to the classical
Gomory–Chvátal procedure coincides with the rank if one were
to use


0, 1

2


-cuts only. Clearly, with Bn as above and F being a

k-dimensional face of [0, 1]n, we have Bn ∩ F ∼= Bk. As a direct
consequence of the proof of [3, Lemma 7.2] one obtains:

Lemma 3.1. Let P ⊆ [0, 1]n be a polytope with Fk ⊆ P for some
k < n. Then Fk+1 ⊆ P ′.

Proof. We include a proof for completeness. Let P as above and let
ax < b + 1 with a ∈ Zn and b ∈ Z be valid for P . We have to show
that ap ≤ b for every p ∈ Fk+1. Let p ∈ Fk+1 be arbitrary. If ap ∈ Z,
we are done. So assume that ap ∉ Z. Then there exists i ∈ [n] such
that ai ≠ 0 and pi =

1
2 . We define the points p0, p1 by setting p0j =

p1j = pj for all j ≠ i, p0i = 0, and p1i = 1. Hence, p =
1
2p

0
+

1
2p

1.
Note that, p0, p1 ∈ Fk ⊆ P and, therefore, apl < b + 1 holds for
l ∈ {0, 1}. We derive ap +

1
2 ≤ max{ap0, ap1} < b + 1 and thus

ap < b+
1
2 . Since ap ∈

1
2Z, it follows that ap ≤ b, hence p ∈ P ′. As

the choice of p ∈ Fk+1 was arbitrary, we obtain Fk+1 ⊆ P ′. �

Note that, F2 ⊆ Bn. Thus, by Lemma 3.1, we have:

Corollary 3.2. Fk ⊆ B(k−2)
n .

The following theorem specifies a family of valid inequalities for
B(k)
n .

Theorem 3.3. Let Bn be defined as above and k ≤ n. Then−
i∈I

xi +
−
i∈Ĩ\I

(1 − xi) ≥ 1

is valid for B(k)
n for all I ⊆ Ĩ ⊆ [n] with |Ĩ| = n − k. Moreover, these

inequalities can be derived as iterated

0, 1

2


-cuts.

Proof. The proof is by induction on k. First, let us look at the case
k = 0. By definition,

∑
i∈I xi +

∑
i∈Ĩ\I(1 − xi) ≥ 1 with Ĩ = [n] is

valid for Bn. Now consider 0 < k ≤ n, and assume that the claim
holds for k − 1. Let Ĩ ⊆ [n] with |Ĩ| = n − k be arbitrary. We have
to prove that

∑
i∈I xi +

∑
i∈Ĩ\I(1 − xi) ≥ 1 with I ⊆ Ĩ is valid for

B(k)
n . Let I0 = Ĩ ∪ {h} for some h ∉ Ĩ . Note that, such an h exists as

k > 0. Then

xh +

−
i∈I

xi +
−
i∈Ĩ\I

(1 − xi) =

−
i∈I∪{h}

xi +
−

i∈I0\(I∪{h})

(1 − xi) ≥ 1

and

(1 − xh) +

−
i∈I

xi +
−
i∈Ĩ\I

(1 − xi) =

−
i∈I

xi +
−
i∈I0\I

(1 − xi) ≥ 1

are valid for B(k−1)
n , by induction hypothesis. By adding the two

inequalities, we obtain

2
−
i∈I

xi + 2
−
i∈Ĩ\I

(1 − xi) ≥ 1

and, therefore,
∑

i∈I xi +
∑

i∈Ĩ\I(1 − xi) ≥
 1

2


= 1 is valid for

B(k)
n . �

We immediately obtain the following corollary.

Corollary 3.4. B(n−2)
n =

 1
2 e


.

Proof. First note that, 1
2 e ∈ B(n−2)

n by Corollary 3.2. By Theorem 3.3
we know that

∑
i∈I xi +

∑
i∈Ĩ\I(1− xi) ≥ 1 with I ⊆ Ĩ = {u, v} ⊆ I

is valid for B(n−2)
n , for any pair u, v ∈ [n], u ≠ v. Therefore xu+xv ≥

1, xu + (1−xv) ≥ 1, (1−xu)+xv ≥ 1, and (1−xu)+ (1−xv) ≥ 1
are valid for B(n−2)

n , which implies xu = xv =
1
2 . �
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