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a b s t r a c t

We consider three easy-to-implement methods for the piecewise linear approximation of functions of
two variables. We experimentally evaluate their approximation quality, and give a detailed description of
how themethods can be embedded in aMILPmodel. The advantages and drawbacks of the threemethods
are discussed on numerical examples.
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1. Introduction

In recent years, the increased efficiency of mixed integer linear
programming (MILP) software tools has encouraged their use also
in the solution of non-linear problems, bringing to the need for ef-
ficient techniques to linearize non-linear functions of one or more
variables. The standardmethodologies consist in the piecewise lin-
ear approximation of such functions.
For functions of a single variable, say, f (x), the piecewise linear

approximation is obtained by introducing a number n of sampling
coordinates x1, . . . , xn on the x axis (breakpoints) on which the
function is evaluated, with x1 and xn coinciding with the left and
right extremes of the x domain (see Fig. 1). The function is then
approximated by the linear segments [(xi, f (xi)), (xi+1, f (xi+1))]
(i = 1, . . . , n − 1). More precisely, for any given x value, say, x̄,
with xi ≤ x̄ ≤ xi+1, the function value is approximated by convex
combination of f (xi) and f (xi+1). Let λ be the (unique) value in
[0, 1] such that

x̄ = λxi + (1− λ)xi+1. (1)

Then the approximated value is

f a(x̄) = λf (xi)+ (1− λ)f (xi+1). (2)

Thismethodology can alternatively be described through the slope
(f (xi+1)− f (xi))/(xi+1 − xi) of the interpolating function, namely

f a(x̄) = f (xi)+ (x̄− xi)
f (xi+1)− f (xi)
xi+1 − xi

. (3)

From (3), one has λ = (xi+1 − x̄)/(xi+1 − xi).
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In order to use the above technique in a MILP solver, it is nec-
essary to include in the model variables and constraints that force
any x value to be associated with the proper pair of consecutive
breakpoints (or with a single one, in case x ∈ {x1, . . . , xn}). Let us
introduce a continuous variable αi for each breakpoint i, such that
αi ∈ [0, 1] (i = 1, . . . , n). Let hi be a binary variable associated
with the ith interval [xi, xi+1] (i = 1, . . . , n−1), with dummy val-
ues h0 = hn = 0 at the extremes. The approximate value f a can
then be obtained by imposing the following constraints:

n−1∑
i=1

hi = 1 (4)

αi ≤ hi−1 + hi (i = 1, . . . , n) (5)
n∑
i=1

αi = 1 (6)

x =
n∑
i=1

αixi (7)

f a =
n∑
i=1

αif (xi). (8)

Constraint (4) imposes that only one hi, say, hı̄, takes the value 1.
Hence, constraints (5) impose that the onlyαi values different from
0 can be αı̄ and αı̄+1. It follows from (6) and (7) that αı̄ = λ and
αı̄+1 = 1 − λ (see (1)). Constraint (8) ensures then the correct
computation of the approximate value according to (2).
In contexts of this type, the MILP constraints can be simplified

by the so-called special ordered sets, introduced by Beale and
Tomlin [1], and extensively studied in [2–4]. By defining a set of
variables to be a Special Ordered Set of type k (SOSk), one imposes
that at most k such variables can take a non-zero value, and that
they must be adjacent. Most modern MILP solvers are capable of
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Fig. 1. Piecewise linear approximation of a univariate function.

automatically handling special ordered sets of type 1 and 2. In our
case, by defining the α variables to be a SOS2, one does not need
to explicitly state h variables, so constraints (6)–(8) are enough to
produce the correct computation. The additional advantage of this
technique is that the enumerative phase may be enhanced by the
internal use of special purpose branching rules.
This article concentrates on the piecewise linear approxima-

tion of functions f (x, y) of two variables, with special emphasis on
their practical usewithinMILPmodels.When a function is approx-
imated one can require that the approximating function has favor-
able theoretical properties such as continuity, differentiability, and
so on. Depending on how they are viewed, some of the approxi-
mations discussed here do not have strong theoretical properties
(for example, they can be discontinuous). However, their proper-
ties are favorable for practical use: they are simple to model, we
can minimize them, and they produce small-size MILPs. For theo-
retical treatments of standard numerical approximation methods,
the reader is referred, e.g., to [5,6] and in particular to Chapter III
of [7].
The article is organized as follows. In Section 2,we present three

approaches and give a detailed description of how they can be em-
bedded in a MILP model. The simplest method (Section 2.1) con-
sists of using the one-variable technique above for a discretized set
of y values. A more complex and classical approach (Section 2.2)
is based on the definition of triangles in the three-dimensional
space, and can be seen as the extension of the one-variable tech-
nique (see [8,9,2,4,10]). In Section 2.3, we give full description of a
third approach, recently used within an applied context (see [11]),
which appears particularly suitable forMILPmodeling. In Section 3,
we discuss the computational issues associated with the three ap-
proaches. In Section 3.1 we examine the average and maximum
error of the approximation on a large set of randomly generated in-
stances. In Section 3.2, we examine the advantages and drawbacks
of the associatedMILPmodels by discussing theoretical properties,
and by analyzing the outcomeof a number of computational exper-
iments on a real-world application in electric power generation.

2. Methods

In this section, we describe three techniques for the piecewise
linear approximation of functions of two variables.

2.1. One-dimensional method

An immediate adaptation of the one-variable technique to the
case of functions of two variables is as follows. Let us introduce a
numberm of coordinates on the y axis, y1, . . . , ym (y1 and ym being
the left and right extremes of the y domain). For the jth interval

Fig. 2. One-dimensional method.

[yj, yj+1), let ỹj be the associated sampling coordinate, leading to
m − 1 univariate functions f (x, ỹj) (j = 1, . . . ,m − 1). For any
given y value, say, ȳ ∈ [yj, yj+1), the approximated function val-
ues f a(x, ȳ) are then given by the piecewise linear approximation
of f (x, ỹj) with breakpoints x1, . . . , xn (see Fig. 2). In the follow-
ing, we assume that the sampling coordinate is the left extreme of
the interval, i.e., ỹj = yj. In this way, the approximating function
agrees with the given function at the breakpoints. In practical ap-
plications, it can often be preferable to use the central point of the
interval as the sampling coordinate, thus loosing such property.
Let β1, . . . , βm−1 be binary variables, defined as an SOS1, with

βj taking the value 1 if and only if the given value ȳ belongs to
[yj, yj+1). The approximate value f a is then obtained through (6)
and (7), and

y ≤
m−1∑
j=1

βjyj+1 (9)

y ≥
m−1∑
j=1

βjyj (10)

m−1∑
j=1

βj = 1 (11)

f a ≤
n∑
i=1

αif (xi, ỹj)+M(1− βj) (j = 1, . . . ,m− 1) (12)

f a ≥
n∑
i=1

αif (xi, ỹj)−M(1− βj) (j = 1, . . . ,m− 1) (13)

where α is the SOS2 introduced in the previous section and M is
a very large value (‘‘big-M’’). Constraints (9)–(11) impose βȷ̄ = 1
and βj = 0 for j 6= ȷ̄, ȷ̄ being the interval which contains y.
Constraints (12) and (13) are inactive if βj = 0, hence providing
f a =

∑n
i=1 αif (xi, ỹȷ̄) for the correct interval ȷ̄.

Note that in model (9)–(13), for a given x value, f a can take
two values for y = yȷ̄, as either βȷ̄−1 or βȷ̄ can equivalently take
the value 1. Although this can be inessential in practice, such
theoretical drawback can be corrected by replacing (9) with y ≤∑m−1
j=1 βjyj+1 − 2θ , where θ is the feasible tolerance of linear

constraints in the specific MILP solver.

2.2. Triangle method

A more complex method can be obtained by extending the
one-variable technique to the two-variable case. Consider again
n sampling coordinates x1, . . . , xn on the x axis and m sampling
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