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a b s t r a c t

We show, using a simple example, that the First-In-First-Out (FIFO) policy can be unstable in a system
with arbitrarily low load. Our proof is based on the observation that the special structure of the example
we use allows us to establish stability using a much simpler queueing system.
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1. Introduction

It is now well known that a system that has theoretically
sufficient capacity to meet all the demand is not necessarily stable
[1,2]. There is a vast literature on how to establish stability of
queueing systems using fluid modes or drift rate arguments; see
[3,4]. These tools have been successfully used to establish stability
of queueing systems in many different settings. Stability of FIFO
has also been studied extensively; see [5–7] and the references
therein. It has been shown in [5] for a stochastic queueing network
and in [7] for an adversarial queue that FIFO can be unstable in
arbitrarily low loads. In this paper, we prove the instability of FIFO
in arbitrarily low loads using a very simple example compared to
those in [5,7].
Consider a queueing system that consists of two job classes and

two server pools, see Fig. 1(a). We refer to these systems as X-
systems. Let λj denote the arrival rate to class j. Let µij denote the
service rate of a class j job by server i for i, j = 1, 2. We assume
that µij > 0 for all i, j = 1, 2. Also assume that service times and
interarrival times are exponential. Define

θ(µ, λ) =
µ11µ12

λ1µ12 + λ2µ11
+

µ21µ22

λ1µ22 + λ2µ21
. (1.1)

Our main result (Theorem 2.1) is that if θ(µ, λ) > 1 the
system is positive Harris recurrent (see, [3]), i.e., the underlying
Markov process has a stationary distribution, and it is rate stable
if θ(µ, λ) = 1 and transient if θ(µ, λ) < 1. From (1.1), it is
not difficult to see that FIFO can be unstable even when the load
on the system is very small. For example, let λ1 = λ2 = 1,
µ11 = µ22 = 1000 and µ21 = µ12 = 0.1 so that θ(µ, λ) ≈ 0.2,
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hence the system is unstable. We first note that as long as server 1
is not allowed to serve class 2 jobs and server 2 is not allowed to
serve class 1 jobs, the system will be stable and the utilization of
the servers will be 0.01%. It is not difficult to see that the system
will be unstable as long as µ21 < 0.5 and µ12 < 0.5 no matter
how large µ11 and µ22 are. To illustrate, we simulate this system
with µ21 = µ12 = 0.49 and µ21 = µ12 = 0.51 with µ11 =
µ22 = 1000. The result are shown in Fig. 1(b). The increasing
curve is the number of jobs in the first queue when service rate
is µ21 = µ12 = 0.49 and the line on the bottom is for the system
with µ21 = µ12 = 0.51. The number of jobs in the second queue,
which is not plotted, exhibits a similar trend.
The idea of the proof of our main result is based on the fact that,

when there are jobs in a queue waiting, the class of the job a server
will serve next does not dependon the systemhistory. For instance,
in the numerical example we gave in the previous paragraph, the
probability that the next job belongs to either class is 50% and this
is independent from the state of the system. Given this fact, it is
not difficult to see that the system is unstable, since the average
time server j takes to finish service is 0.5/µj1 + 0.5/µj2. Again, if
µ12 = µ21 < 0.5, this implies on average the service time of a job
from either server is greater than 1. Since the total arrival rate is 2,
the queue lengths are bound to explode. In general, the analysis
of the stability of FIFO is very complicated. We prove the result
by showing that the X-model under FIFO is equivalent to another
systemwith a single queue. The stability of this new system can be
established using traditional fluid models; see [8].
In [5], a similar result in a queuing system, where jobs visit

each server several times and service time depends on the number
of the visit, has been shown. However, unlike our example, the
example used there has more and more servers as the load gets
smaller and smaller. In [7], an adversarial queue in a systemwhose
graph has to have at least a diameter O(r−1 log(1/r)3) if the arrival

0167-6377/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.orl.2009.05.001

http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:ttezcan@uiuc.edu
http://dx.doi.org/10.1016/j.orl.2009.05.001


T. Tezcan / Operations Research Letters 37 (2009) 312–316 313

(a) An X-model queueing
system.

(b) Simulation results for two systems.

Fig. 1. X-model and simulation results.

rate is r has been used to show instability of FIFO. Compared to
these systems, our example is very simple. This is due to the fact
that they only consider systems where each job class can only be
served by a unique server. Allowing all servers to serve all the job
classes simplifies the proof considerably. Such simplification is not
possible, evenwhenwe add another server that can only serve one
of the classes. However, it is possible to extend our result to the
case with several servers and several job classes as long as all the
servers can handle all the job classes.
It should be clear from our example above that the main reason

why FIFO is not stable is because servers use activities, job class-
server matchings, that are not very ‘‘efficient’’. It is common in the
literature to devise scheduling policies assuming which activities
are efficient; see [9,10] among others. This is accomplished by
formulating a static planning problem (SPP) (see Section 2) and
determining from its solution which activities should be used,
called the basic activities, and which activities should not be
used, called the non-basic activities. However, the SPP requires
information about arrival rates, which is not always available. We
note, however, that there are policies such asmax-weight; see [11]
and the references therein, that do not require the information
about which activities are basic.
The rest of this paper is organized as follows. In Section 2 we

present the details of the queueing system and our main result. In
Section 3 we prove the main result.

2. Queuing model and main result

Consider the X-model introduced in the previous section.
Assume that servers are dispatched according to a FIFO policy;
when a server finishes service, that server starts serving the longest
waiting job in the system if there are any. How a job is routed
to servers when there is an arrival to an empty system does
not matter. For concreteness, it can be assumed that a server is
picked randomlywith equal probability. Service times dependboth
on the class and the server providing service. We assume that
interarrival times and service times are exponentially distributed.
Let µij denote the service rate of a class j job by server i for i, j =
1, 2. We assume that µij > 0 for all i, j = 1, 2. The arrival rate to
class j is denoted by λj.
In order to define the load on the system, it is customary to

formulate a linear program that is known as the static planning
problem (SPP). The SPP in this setting is defined by

min ρ
s.t.

2∑
i=1

µijxij = λj, for j = 1, 2,

2∑
j=1

xij ≤ ρ, for i = 1, 2,

xij ≥ 0, for j = 1, 2 and i = 1, 2.

The quantity xij can be thought of as the long-run proportion
of time server i serves class j jobs. The objective of the SPP is
to minimize the nominal utilization of the busiest server pool.
Let (ρ∗, x∗) be an optimal solution to the SPP. If ρ∗ ≤ 1 then
theoretically, the system can be made stable under some policy.
Hence, we call ρ∗ the load on the system. For the example we used
in Section 1, the optimal solution to SPP is ρ∗ = 0.1%, x∗11 = x

∗

22 =

0.001, x∗12 = x
∗

21 = 0. To illustrate the main claim of this paper,
let µ12 = µ21, µ11 = µ22 > λ1 = λ2 = 1, and µ12 < µ11,
then ρ∗ = 1/µ11. As discussed in Section 1, as long as µ21 < 0.5,
the system is unstable no matter what the value of µ11 is. Hence,
although the system is unstable, the load on the X-model can be
made arbitrarily low by choosing µ11 arbitrarily large.
Next, we give precise definitions of stability and instability

before we present our main result. Let Qj(t) denote the number
of class j jobs in queue and Q (t) = (Q1(t),Q2(t)). A queueing
network is said to be rate stable if for each initial fixed data
‖Q (t)‖
t
⇒ 0 as t →∞,

with probability one, where ‖ · ‖ is the max norm. A queueing
system is said to be positive Harris recurrent if the underlying
Markov process possesses a unique stationary distribution. A
queueing system is said to be transient if the underlying Markov
process does not admit a stationary distribution. Next we present
our main result.

Theorem 2.1. Consider an X-model system operating under FIFO.

(a) It is positive Harris recurrent if θ(µ, λ) > 1.
(b) It is rate stable if θ(µ, λ) ≥ 1.
(c) It is transient if θ(µ, λ) < 1.

Remark 2.2. The proof of Theorem2.1 below implies that, ifµ11 =
µ22 and µ12 = µ21, an X-model under FIFO has the same finite
dimensional distributions as an M/G/2 system with service rate
of each server equal to µ̄ = (λ1 + λ2)θ(µ, λ)/2. Since an
M/G/2 system can only be stable if 2µ̄ > (λ2 + λ2), this proves
Theorem 2.1 in this special case.
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