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a b s t r a c t

In this paper we present a cutting plane algorithm for the Set Covering problem. Cutting planes are
generated by running an ‘‘exact’’ separation algorithm over the subproblems defined by suitably small
subsets of the formulation constraints. Computational results on difficult small-medium size instances
are reported.
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1. Introduction

Let E = {e1, . . . , em} be a finite set and let S = {S1, . . . , Sn} be
a given collection of subsets of E. Let F ⊂ {1, . . . , n} be an index
subset. F is said to cover E if E =

⋃
j∈F Sj.

The Set Covering Problem (SCP) is to find a minimum weighted
cover of E. SCP is generally NP-hard, and has relevant applications
in Crew Scheduling, Vehicle Routing, Machine Learning.
Let c = (c1, c2, . . . , cn) be a set of weights associated with the

elements of E. Let A = (aij) be a matrix with entries aij ∈ {0, 1},
where aij = 1 if ei ∈ Sj, 0 otherwise, and let 1 denote a vector of
ones of appropriate size. SCP can be formulated as:

min cTx
Ax ≥ 1
x ∈ {0, 1}|E|.

Let γ (A) = {x ∈ {0, 1}|E| : Ax ≥ 1} denote the set of the
feasible solutions of SCP. We denote by P(A) = conv(γ (A)) the Set
Covering polytope. All the nontrivial facets of P(A) are of the form
αTx ≥ β , with α, β ≥ 0 [18].
Most of the literature on Set Covering algorithms focused on

heuristics for large-scale instances [6–8].
Much less attention has been paid to the exact solution of

difficult instances. The only recent approaches we are aware of
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are the Mannino and Sassano [16] enumerative algorithm for
the Steiner Triples and the disjunctive cutting plane algorithm
proposed by Ferris, Pataki and Schmieta [11] to solve to optimality
the well-known ‘‘seymour ’’ instance.
The structure of the Set Covering polytope has been deeply

investigated in Balas and Ng [4,5], Cornuejols and Sassano [9],
Sassano [18], Nobili and Sassano [17], Saxena [19–21], but these
relevant theoretical results have not led yet to a successful cutting
plane algorithm. In our opinion this is due to the difficulty of
designing efficient separation algorithms.
In this paper we report on a computational experience with a

separation procedure for general (i.e. not based on the ‘‘template
paradigm’’) cutting planes – SepGcuts – based on the following
idea:

(i) identify a suitably small subproblem defined by a subset of the
formulation constraints;

(ii) run an exact separation algorithm over the subproblem to
produce a violated cutting plane, if any exists.

The approach can be seen as an early attempt to extend to other
IP problems the ‘‘local cuts’’ methodology introduced by Applegate
et al. [1,2] for the TSP. This topic has been recently investigated by
D. Espinoza in his Ph.D. dissertation [10].
SepGcuts combines MIP separation of rank-1 Chvátal–Gomory

cuts to find a ‘‘separating subproblem’’, whose investigation
ensures to return a violated valid inequality, and a brute-force
separation routine for ‘‘suitably small’’ subproblems, to produce
violated facets of the Set Covering polytope P(A).
The remainder of the paper is organized as follows. In Section 2

we outline SepGcuts. In Section 3 we describe the exact separation
procedure for a subproblem P(AS) of P(A)with a reduced number
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of columns and a reduced number of rows. In Section 4 we report
on a computational experience on difficult small-medium size
instances. In the Appendix we give the implementation details of
the MIP separation procedure for rank-1 Chvátal–Gomory cuts.

2. Outline of the separation procedure SepGcuts

Let N denote the index set of the columns of A. Given a subset
S ⊂ N of columns, in the following we indicate with AS the
submatrix of A defined by the columns of A with index in S and
by the rows of A containing only variables in S.
SepGcuts consists of three basic steps. First we look for a

submatrix AS of Awith the property that x̂S 6∈ P(AS), where x̂ is the
current fractional solution and x̂S =

[
x̂i : i ∈ S

]
its support vector.

Then we run an exact separation procedure to identify
facet-inducing inequalities of P(AS) which cut-off x̂S . By ‘‘exact
separation’’ we mean a brute-force separation algorithm which
guarantees to return a hyperplane separating x̂S and P(AS).
In the third step, sequential lifting is used to convert the facets

of P(AS) into facets of the Set Covering polytope P(A).
For the success of the procedure it is crucial to choose a set S

such that x̂ 6∈ P(AS) and S is suitably small. In this paper we test
rank-1 Chvátal–Gomory cutting planes as drivers to ‘‘promising’’ S
subsets, because they are suitably ‘‘sparse’’, so leading to small S
subsets. The separation procedure SepGcuts can be summarized as
follows:

Procedure SepGcuts

1. Choose AS
1a. Let Bx ≥ b the current formulation of the Set Covering
problem, after the addition of some valid inequalities. We
recall that both B and b have nonnegative entries. Run an MIP
separation routine for rank-1 Chvátal–Gomory cuts [12,14] to
generate a valid inequality cTx ≥ d for P(A) which cuts-off x̂,
i.e. cT x̂ < d

1b. Let S = {j ∈ N : cj > 0} be the support of c and let
cS = [cj : j ∈ S] be the support vector of c .

1c. Set xj = 1 for each j ∈ N \ S. Let AS be the submatrix of A
defined by the columns of Awith index in S and by the rows of
A containing only variables in S (all the inequalities in Ax ≥ 1
including variables in N \ S become redundant and can be
removed).

2. Exact separation over P(AS)
2a. Let xS = [xi : i ∈ S] be the support vector of x and let

γ (AS) = {xS ∈ {0, 1}S : ASxS ≥ 1} be the set of the feasible
solutions of the reduced Set Covering problem defined by the
submatrix AS . Let P(AS) = conv(γ (AS)) be the Set Covering
polytope associated with AS .

2b. The inequality cTS xS ≥ d is valid for P(AS) and cuts-off x̂S .
2c. Run an exact separation procedure over P(AS) to generate an
inequality of the form αTS xS ≥ β , (αS, β) ≥ 0, facet-inducing
for P(AS) and violated by x̂.

3. Lifting
3a. Any valid inequality for P(AS) is also valid for P(A) [18]. But
in general it is not true that the facets of P(AS) are facet-
defining for P(A) too, and sequential lifting is required to
convert αTS xS ≥ β into a facet of P(A).

3. Exact separation of valid inequalities for P(AS)

Let P(AS) be the Set Covering polytope associated with the
reducedmatrix AS and let ext(P(AS)) denote the set of the extreme
points of P(AS). The linear program for the exact separation of valid
inequalities for P(AS) is:

θ∗ = min x̂TSαS − β

yTαS ≥ β, y ∈ ext(P(AS)) (1)

(α, β) ∈ Ω (2)

where Ω is a normalization set ensuring that the LP (1)–(2) is not
unbounded (and consequently that at least an extreme optimal
solution exists).
The following proposition – which can be extended to any

0-1 Integer Programming problem – shows that if Ω is defined
by a normalization hyperplane, i.e. Ω = {(αS, β) ∈ R|S|+1 :
παS − γ β = π0}, the extreme points of (1)–(2) are in one-to-one
correspondence with the facets of P(AS).

Proposition 1. Let (αS, β) be an extreme point solution of the LP:

θ∗ = min x̂TSαS − β

yTαS ≥ β, y ∈ ext(P(AS)) (3)
παS − γ β = π0 (4)

where παS − γ β = π0 is a normalization hyperplane. The inequality
αTS xS ≥ β induces a facet of P(AS).

Proof. Let us assume that ASx ≥ 1 has at least two entries for each
row, so P(AS) is full-dimensional. Since (αS, β) is an extreme point
solution, it provides |S| linearly independent active constraints (3),
i.e. |S| linearly independent feasible solutions y satisfying αTS y ≥ β
as an equality (roots). �

It follows that if Ω = {(αS, β) ∈ R|S|+1 : παS − γ β = π0}

is a normalization set, the LP (3)–(4) returns a facet of P(AS) as an
extreme point optimal solution.
Now we show that the hyperplane {(αS, β) ∈ R|S|+1 : 1TαS −

β = 1} is a normalization hyperplane.

Proposition 2. The equality 1TαS − β = 1 defines a normalization
hyperplane.

Proof. To show that equality (2) is a normalization hyperplane, we
project out the variable β = 1TαS − 1 to get the equivalent LP:

θ∗ = max (1− x̂S)TαS − 1

(1− y)TαS ≤ 1, y ∈ ext(P(AS)). (5)

We can assume wlog that, for each h ∈ S, the solution yh = 0 and
yj = 1 for each j ∈ S \ {h} is feasible and from (5) we get αj ≤ 1,
for each j ∈ S. It follows that LP (5) is not unbounded, since all the
objective function coefficients are nonnegative. �

Remark 1. Here we show that the more popular β = 1 condition
does not define a normalization hyperplane. Consider the Set
Covering problem:

min y1+ 3y2+ 3y3+ 3y4
y1+ y2 ≥ 1
y1+ y3 ≥ 1
y3+ y4 ≥ 1
y1, y2, y3, y4 ∈ {0, 1}
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