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a b s t r a c t

Given a graph G, we construct an auxiliary graph G̃withm vertices such that the set of all stable sets of G̃
is in one-to-one correspondence with the set of all colorings of G. Then, we show that the Max-Coloring
problem in G reduces to the MaximumWeighted Stable set problem in G̃.
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1. Introduction

Given a simple graph G, with vertex-set V (G) and edge-set
E(G), a stable set of G is a subset of vertices any two of which
are nonadjacent, and a coloring of G is a partition of V (G) into
nonempty stable sets. The maximum cardinality of a stable set of
G is denoted by α(G), and the minimum number of stable sets in
a coloring of G, that is the chromatic number of G, is denoted by
χ(G).
The (classical) graph coloring problem is to find a coloring with

a minimum number of stable sets. This problem arises in many
applications (e.g., timetabling, bandwith allocation. . .). However,
extra constraints or a modified objective function are necessary to
model properly most applications.
For instance, given a graph Gwith a weight p(v) ∈ R associated

to each vertex v, the Max-Coloring problem is to find a coloring
{V1, . . . , Vk} of G that minimizes

∑i=k
i=1maxv∈Vi p(v). It has crucial

applications in batch scheduling [4,5], buffer minimization [11]
and telecommunication [12]. Notice that Max-Coloring is a proper
generalization of the classical graph coloring problem, since if
p is the unit vector,

∑i=k
i=1maxv∈Vi p(v) = k. Max-Coloring is

substantially harder than the graph coloring problem (for instance
it is NP-hard in chordal graphs [4] while graph coloring is almost
trivial in these graphs).
Several mathematical programs have been designed in order

to solve the coloring problem and its generalizations [1,3,
10]. Our approach is very similar to the model of ‘‘canonical
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representatives’’ proposed in [1] (resp. [9]), where graph coloring
(resp. Max-Coloring) is formulated with a 0-1 linear program with
n + m variables (as usual n is the number of vertices of G and
m = O(n2) is the number of edges in the complementary graph of
G). We make fundamental improvement on [1,3,9] by formulating
the graph coloring problem with a 0-1 linear program (with only
m variables) of a well-studied type: We reduce it to the maximum
stable set problem in an auxiliary graph (that is, the problem of
determining a stable set withmaximum cardinality). The benefit is
that anymethodor bounddeveloped to copewithmaximumstable
sets, for instance those in [7], can be used directly to cope with
minimum colorings (via the reduction that we discuss). Notice that
there exists already one well-known reduction from the coloring
problem in G to the maximum cardinality stable set problem in an
auxiliary graph Ĝwith order O(n2): Recall that α(Ĝ)+ χ(G) = 2n,
where Ĝ consists in n disjoint copies G1, . . . ,Gn of G associated
with n new vertices x1, . . . , xn such that each vertex xi is linked
to all vertices of Gi and such that all copies of a vertex of G are
pairwise linked in Ĝ. This reduction is actually at the base of
compact formulations such as [3]. However, we stress two points.
First there are, in general, an exponential number of stable sets
of Ĝ associated with one coloring of G. Second, given a weight
function on the vertices of G, we are not aware of a possibility of
finding a weight function on the vertices of Ĝ such that an optimal
coloring forMax-Coloring in G corresponds to a stable set of Ĝwith
maximum weight. The reduction that we propose seems to be the
first with the following two properties:
• It describes a 1-to-1mapping between all colorings of G and all
stable sets of G̃;
• Max-Coloring reduces to theweighted version of themaximum
stable set problem in G̃.
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The paper is organized as follows. In Section 2, we explain how
to construct a graph G̃ onm vertices whose stable sets are in 1-to-1
mapping with the colorings of a graph G. In Section 3, we show
how to generalize our reduction to the Max-Coloring problem.
In Section 4 we discuss issues concerning our reduction such as
complexity, polyhedra and bounds.

2. A one-to-one correspondence

A partition into cliques of G is a partition {Q1, . . . ,Qk} of
V (G) such that each Qi induces a complete subgraph. Notice that
{Q1, . . . ,Qk} is a partition into cliques of G if and only if it is a
coloring of the complementary graph G. Our reduction is easier to
explain in terms of partition into cliques, rather than in terms of
colorings. In Section 2.1, we mention how to represent a partition
into cliques of a graph by a forest of the same graph. In Section 2.2,
we break the symmetries of such a representation, leading to the
reduction itself, which is detailed in Section 2.3.

2.1. Forests inducing cliques

The first idea in our reduction relies on the well-known
following fact:

Lemma 2.1. For any graph G and any forest F ⊆ E(G), if
{C1, . . . , Ck} are the connected components of the partial subgraph
(V (G), F), we have: |F | + k = |V (G)|. �

In other words, minimizing the number of connected components
induced by a forest is equivalent to maximizing the number of
edges of a forest. Moreover, finding the minimum number of
cliques required to partition V (G) is equivalent to find a forest
F ⊆ E(G) with |F | as big as possible such that each tree of
F spans a clique. However, representing partitions into cliques
with forests suffers two drawbacks. First, a given clique might
be spanned by many different trees. Second, the (hereditary)
hypergraph of forests inducing cliques requires to be studied as a
new combinatorial structure.
In the next section, we put restrictions on the trees that we

consider so that each clique of G is spanned by a unique tree. This
restriction uses an (arbitrary) acyclic orientation of the edges of
the graph. We therefore deal with necessary concepts in oriented
graphs.

2.2. Simplicial stellar forests in digraphs

LetD be a simple digraphwith vertex-set V (D) and arc-set A(D).
An arc with tail u and head v is denoted by (u, v). A subset of arcs
S ⊆ A(D), is called an out-star of D if there exists a vertex u such
that each arc of S is of the form (u, v) for some v ∈ V (D). The out-
star S is said to be centered on the vertex u. The nonempty out-star
S spans the setU := {u : (u, v) ∈ S}∪{v : (u, v) ∈ S} of all vertices
incident to an arc of S. Two stars are said to be vertex-disjoint if they
span disjoint subsets of vertices. The digraph D is called acyclic if
it has no directed cycle. Recall that D is acyclic if and only if there
is a total ordering< on its vertex-set such that u < v for each arc
(u, v).
A pair of arcs {a, b} of D is called a simplicial pair of D if a =

(u, v), b = (u, w), and (v,w) or (w, v) is an arc of D, for three
distinct vertices u, v, w. If all pairs of arcs of an out-star S are
simplicial, then S is a simplicial star of D. A simplicial stellar forest of
D is the union of pairwise vertex-disjoint simplicial stars.
Lemma 2.2 explains the relevance of simpliciality with respect

to partition into cliques.

Fig. 1. The correspondence between a partition into cliques and a simplicial stellar
forest.

Lemma 2.2. For any acyclic digraph D, the partitions into cliques of
D are in one-to-one mapping with the simplicial stellar forests of D.

Proof. Each simplicial star spans a unique clique. So we can
associate to each simplicial stellar forest S a unique set of disjoint
cliques. These cliques, together with singletons (each vertex not
spanned by S is taken as a singleton) form a unique partition into
cliques of D. Conversely, since D is acyclic, any clique C , with |C | ≥
2, is spanned by a unique simplicial star (centered on theminimum
vertex of C assuming V (G) = {1, . . . , n} and i < j for each arc
(i, j)). Hence, given a partition into cliques C = {C1, C2 . . . Ck},
there exists a unique simplicial stellar forest S = {S1, S2 . . . St}
such that each clique Ci of C with |Ci| ≥ 2 is spanned by a star
Sj of S. �

Fig. 1 illustrates the correspondence of Lemma 2.2 (observe that
cliques of size 1 in a partition of V (G) correspond to no arc at all in
the simplicial stellar forest). Now, and thanks to Lemma 2.3 below,
the simplicial stellar forests of a digraphD correspond to the stable
sets of an auxiliary graph with |A(D)| vertices. In the next section,
we define this auxiliary graph in more details.

Lemma 2.3. For any digraph D, a subset A′ ⊆ A(D) of arcs forms a
simplicial stellar forest of D if and only if any two adjacent arcs in A′
form a simplicial pair of D.

Proof. Since necessity is straightforward we only show suffi-
ciency. Assume that any two adjacent arcs in A′ form a simplicial
pair of D. So if two arcs of A′ are adjacent, then they have the same
tail and their heads are adjacent vertices. This implies two prop-
erties. First, if A′′ is a subset of pairwise adjacent arcs of A′, then
the arcs in A′′ have the same tail and span a clique. Second, the re-
lation ‘‘a is adjacent with b’’ is an equivalence relation on A′. This
relation defines a unique partition S = {A′1, . . . , A

′

k} of A
′ such that

the arcs in A′i are pairwise adjacent, and that the A
′

i ’s are pairwise
disjoint. The first property implies that each A′i is a simplicial star.
So by definition, S is a simplicial stellar forest of D. �

2.3. Representing colorings of G by stable sets of G̃

The line-graph of the digraph D is the graph with vertex set A(D)
where two vertices are linked by an edge in the line-graph of D if
they correspond to two adjacent arcs inD. In otherwords, wemean
line-graph in the sense of undirected graphs. Let D be an acyclic
orientation of the complementary graph G of G, so V (D) = V (G)
and |A(D)| = m. The auxiliary graph G̃ is obtained from the line-
graph of D by removing all edges between pairs of arcs which are
simplicial in D. Equivalently, G̃ can be defined by choosing a total
order V (G) = {v1, . . . , vn} (which induces an acyclic orientation
D of G) and letting G̃ be the auxiliary graph obtained from G as
follows:

• V (G̃) = {a1, . . . , am} := {arcs (vi, vj) such that {vi, vj} ∈ E(G)
and i < j}.
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