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a b s t r a c t

The statistical analysis for equations drivenby fractional Gaussianprocess (fGp) is relatively
recent. The development of stochastic calculus with respect to the fGp allowed to study
such models. In the present paper we consider the drift parameter estimation problem for
the non-ergodic Ornstein–Uhlenbeck process defined as dXt = θXtdt + dGt , t ≥ 0 with
an unknown parameter θ > 0, where G is a Gaussian process. We provide sufficient con-
ditions, based on the properties of G, ensuring the strong consistency and the asymptotic
distribution of our estimatorθt of θ based on the observation {Xs, s ∈ [0, t]} as t → ∞.
Our approach offers an elementary, unifying proof of Belfadli (2011), and it allows to ex-
tend the result of Belfadli (2011) to the case when G is a fractional Brownian motion with
Hurst parameter H ∈ (0, 1). We also discuss the cases of subfractional Brownian motion
and bifractional Brownian motion.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

While the statistical inference of Ito’s type diffusions has a long history, the statistical analysis for equations driven by
fractional Gaussian process is relatively recent. The development of stochastic calculus with respect to the fGp has allowed
to study such models. We will recall several approaches to estimate the parameters in fractional models but we mention
that the list below is not exhaustive:

– TheMLE approach in Kleptsyna and Le Breton (2002), Tudor andViens (2007): In general the techniques used to construct
maximum likelihood estimators (MLE) for the drift parameter are based on Girsanov’s transforms for fBm and depend
on the properties of the deterministic fractional operators (determined by the Hurst parameter) related to the fBm. In
this case, the MLE is not easily computable.

– A least squares approach has been proposed in Hu and Nualart (2010): The study of the asymptotic properties of the
estimator is based on certain criteria formulated in terms of the Malliavin calculus. In the ergodic case, the statistical
inference for several fractional Ornstein–Uhlenbeck (fOU) models has been recently developed in the papers (Azmoodeh
&Morlanes, 2013; Azmoodeh&Viitasaari, 2015; Cénac&Es-Sebaiy, 2015; El Onsy, Es-Sebaiy, &Viens, 2014;Hu&Nualart,
2010; Hu & Song, 2013). The case of non-ergodic fOU process of the first kind and of the second kind can be found in
Belfadli, Es-Sebaiy, and Ouknine (2011) and El Onsy, Es-Sebaiy, and Tudor (2014) respectively.
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– Method of moments: A new idea has been provided in Es-Sebaiy and Viens (2015), to develop the statistical inference for
stochastic differential equations related to stationary Gaussian processes by proposing a suitable criteria. This approach
is based on the Malliavin calculus, and it makes in principle the estimators easier to be simulated. Moreover, as an
application, the models discussed in Azmoodeh and Morlanes (2013), Azmoodeh and Viitasaari (2015), El Onsy et al.
(2014), Hu and Nualart (2010) have been studied in Es-Sebaiy and Viens (2015) by using this approach.

In this paper, we consider the non-ergodic Ornstein–Uhlenbeck process X = {Xt , t ≥ 0} given by the following linear
stochastic differential equation

X0 = 0; dXt = θXtdt + dGt , t ≥ 0, (1.1)

where G is a Gaussian process and θ > 0 is an unknown parameter.
A problem here is to estimate the parameter θ when one observes thewhole trajectory of X . In the case when the process

X has Hölder continuous paths of order δ ∈ ( 1
2 , 1] we can consider the following least squares estimator (LSE)

θt =

 t
0 XsdXs t
0 X2

s ds
, t ≥ 0, (1.2)

as estimator of θ , where the integral with respect to X is a Young integral (Young, 1936) (see Appendix). The estimatorθt is
obtained by the least squares technique, that is,θt (formally) minimizes

θ −→

 t

0

Ẋs − θXs
2 ds.

Moreover, using the formula (A.1) we can rewriteθt as follows,

θt =
X2
t

2
 t
0 X2

s ds
, t ≥ 0. (1.3)

Motivated by (1.3) we propose to use, in the general case, the right hand side of (1.3) as a statistic to estimate the drift
coefficient θ of Eq. (1.1). More precisely, we define

θt =
X2
t

2
 t
0 X2

s ds
, t ≥ 0. (1.4)

This estimatorθt may exist even if X does not have Hölder continuous paths of order δ ∈ ( 1
2 , 1].

We shall provide sufficient conditions, based on the properties of G, under which the estimatorθt is consistent (see
Theorem 2.1), and the limit distribution ofθt is a standard Cauchy distribution (see Theorem 2.2).
Examples of the Gaussian process G.

Fractional Brownian motion:
Suppose that the process G given in (1.1) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). By assuming

that H > 1
2 , Belfadli et al. (2011) studied the LSEθt which coincides, in this case, withθt by Remark 2.1. In this paper, we

extend the result of Belfadli et al. (2011) to the case H ∈ (0, 1). Moreover, we offer an elementary proof (see Section 3.1).
Sub-fractional Brownian motion:
Assume that the process G given in (1.1) is a subfractional Brownianmotion with parameterH ∈ (0, 1). ForH > 1

2 , using
an idea of Belfadli et al. (2011), Mendy (2013) studied the LSEθt which also coincides withθt . But the proof of Lemma 4.3
in Mendy (2013) relies on a possibly awed technique because the passage from line −7 to −6 on page 671 does not allow

to obtain the convergence of E


e−θ t
 t
0 eθsdSHs

2
as t → ∞. In the present paper, we give a solution of this problem and

we extend the result to H ∈ (0, 1) (see Section 3.2).
Bifractional Brownian motion:
To the best of our knowledge there is no study of the problem of estimating the drift of (1.1) in the case when G is a

bifractional Brownian motion with parameters (H, K) ∈ (0, 1)2. Section 3.3 is devoted to this question.

2. Asymptotic behavior of the estimator

Let G = (Gt , t ≥ 0) be a continuous centered Gaussian process defined on some probability space (Ω, F , P) (here, and
throughout the text, we assume that F is the sigma-field generated by G). The following assumptions are required.

(H1) The process G has Hölder continuous paths of order δ ∈ (0, 1].
(H2) For every t ≥ 0, E


G2
t


≤ ct2γ for some positive constants c and γ .
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