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a b s t r a c t

In this paper we propose a Bayesian variable selectionmethod in quantile regression based
on the Savage–Dickey density ratio of Dickey (1976). The Bayes factor of amodel containing
a subset of variables against an encompassing model is given as the ratio of the marginal
posterior and the marginal prior density of the corresponding subset of regression coeffi-
cients under the encompassing model. Posterior samples are generated from the encom-
passingmodel via a Gibbs sampling algorithm and the Bayes factors of all candidatemodels
are computed simultaneously using one set of posterior samples from the encompassing
model. The performance of the proposed method is investigated via simulation examples
and real data sets.

© 2016 Published by Elsevier B.V. on behalf of The Korean Statistical Society.

1. Introduction

Quantile regression, introduced byKoenker andBassett (1978), has been rapidly expanding over recent years, particularly
in econometrics, finance, survival analysis, social sciences, and microarray research (Hendrick & Koenker, 1992; Koenker
& Geling, 2001; Koenker & Hallock, 2001; Wang & He, 2007; Yang, 1999). Quantile regression explores the relationships
between a set of covariates and different parts of the conditional distribution of a response variable, and hence provides
more comprehensive information on the relationship between the response variable and the covariates than classical mean
regression. See Koenker (2005) and Yu, Lu, and Stander (2003) for an overview.

Let yi denote the response variable and xi the q×1 vector of covariates for the ith observation. For 0 < p < 1, letQyi(p|xi)
be the pth quantile of yi given xi. Suppose that the relationship between Qyi(p|xi) and xi can bemodeled as Qyi(p|xi) = x′

iβp,
for i = 1, . . . , n, where βp is an unknown vector of coefficients that depends on p. Then, a linear quantile regression model
can be expressed as

yi = x′

iβp + εi, (1)
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where εi is an error term whose distribution is restricted such that the pth quantile is equal to zero. A consistent estimate
of the quantile regression coefficient βp can be obtained by minimizing

n
i=1

ρp(yi − x′

iβp), (2)

where ρp is the check loss function, given by

ρp(u) = u(p − I(u < 0)), (3)

and I is the indicator function. Since explicit solutions to theminimization cannot be obtained, linear programmingmethods
are commonly used to obtain estimates of βp (Koenker & Park, 1996; Portnoy & Koenker, 1997).

Koenker and Machado (1999) noted that minimizing (2) is equivalent to maximizing a likelihood function under
asymmetric Laplace (AL) error distribution. Yu and Moyeed (2001) used this finding to propose a Bayesian modeling
approach to quantile regression, and obtained samples of βp from its posterior distribution using Markov chain Monte
Carlo (MCMC) methods. Kozumi and Kobayashi (2011), Reed and Yu (2009) and Tsionas (2003) proposed Gibbs sampling
algorithms (Gelfand & Smith, 1990) for posterior estimates of βp by using a location-scale mixture representation of the
asymmetric Laplace distribution.

As in mean regression, variable selection in quantile regression is a crucial aspect of improving the precision of model
fit. Recently, a Bayesian approach for variable selection in quantile regression has received attention from researchers, since
Bayesian methods are often more competitive for small or moderate data sets with a low signal-to-noise ratio (Antoniadis,
Bigot, & Sachs, 2009; Ji, Lin, & Zhang, 2012). Li, Xi, and Lin (2010) studied regularization, e.g. lasso, in quantile regression
from a Bayesian perspective. Alhamzawi and Yu (2012), Ji et al. (2012), and Yu, Chen, Reed, and Dunson (2013) proposed
a variant of stochastic search variable selection (SSVS George & McCulloch, 1993) method in quantile regression using the
asymmetric Laplace error distribution.

In this paper we introduce an alternative Bayesian variable selection method in quantile regression based on the
Savage–Dickey (SD) density ratio, referred to as the SD method. When there is a set of candidate models having subsets of
β equal to zero, each candidate model can be compared with an encompassing model which encompasses all the candidate
models. Under suitable priors the Bayes factor of each candidate model against the encompassingmodel can be represented
as the ratio of the posterior and the prior marginal density of the corresponding subset of β at zero, where the marginal
densities are derived from the joint density ofβ under the encompassingmodel. This is known as the Savage–Dickey density
ratio (Dickey, 1971, 1976; Dickey & Lieutz, 1970).

Since the prior densities are known in most cases, the variable selection problem now becomes a problem of estimating
themarginal posterior densities of subsets of β at zero. Estimation of themarginal posterior densities can be achieved easily
using the known conditional posterior densities of subsets of β and the posterior samples of β from the encompassing
model. Key features of the SD method are that it fits only the encompassing model and that it estimates the Bayes factors
of all candidate models simultaneously. Also, the method can be easily implemented for constrained variable selection in
which variables are selected in groups or in hierarchy or in anti-hierarchy. In anti-hierarchy constraints, the inclusion of
one variable forces another variable to be excluded from the model (Farcomeni, 2010). We illustrated a simple hierarchy
constrained case in Section 5.2.

The rest of paper is organized as follows. Section 2 presents the posterior inference on parameters in quantile regression
using the Gibbs sampling algorithm. Section 3 derives the Bayes factors ofmodels using the SD density ratio and proposes an
efficient estimation of the Bayes factors using the posterior samples. Section 4 presents the results froma series of simulation
studies to investigate the performance of the SD method. Section 5 contains an application of the method to real data sets.
The paper is concluded in Section 6.

2. Posterior inference

We consider model (1) and assume that the error term εi follows the AL distribution with density

fp(εi) = p(1 − p) exp

−ρp(εi)


,

where ρp is defined in (3). Then the likelihood function of βp is proportional to

exp


−

n
i=1

ρp(yi − x′

iβp)


,

and maximizing the likelihood function is equivalent to minimizing (2). From here on we suppress the subscript p on β to
simplify notation.

The AL distribution has various mixture representations (Kotz, Kozubowski, & Podgorski, 2001). Among those, mixture
representations based on normal and exponential distributions are useful for implementation of the Gibbs sampler (Ji et al.,
2012; Kozumi & Kobayashi, 2011; Yu et al., 2013). We adopt the mixture representation given in Yu et al. (2013). Let wi
follow an exponential distribution with rate p(1− p) and assume that, given wi, εi follows N((1− 2p)wi, 2wi) distribution,
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