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a b s t r a c t

Interval censoring is frequently encountered in many clinical trials with periodic follow-
up as the time of a specific event, such as death, is determined within an interval. Most
existing methodologies with regression analysis were extended and developed under
the assumption of non-informative censoring mechanism. However, this assumption
sometimes does not hold. Subsequently, it is impossible to test the dependence or
independence assumption of the censoring mechanism. One remedy to circumvent these
difficulties is to impose extra assumptions or modeling. In this article, we employ the
Cox proportional hazards models with a shared frailty effect incorporated with clustered
interval-censored data forwhich there exists a dependency between the failure and visiting
times. The parameters are estimated via the EM algorithm. Simulations are performed to
investigate the finite-sample properties of the proposed method. Finally, two real datasets
are analyzed to demonstrate our methodologies.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Interval-censored outcomes often arise as the time of a specific event is known to have occurredwithin a period. This type
of censoringmechanism can be regarded as more general compared to right censoring. In many clinical trials in conjunction
with periodic follow-up, each subject is observed through several examinations. However, a subject may skip one or more
pre-appointed visits and return with the failure already occurred. In these situations, the event time lies on an interval of
the form (L, R], where L is the time last seen without disease, and R is the first time the subject appeared with disease. Thus,
subjects without any disease should have R = ∞, hence right-censored. On the contrary, a subject with L = 0 corresponds
to left-censored. Extensive work has been conducted to analyze interval-censored data. Sun (2006) provides comprehensive
literature on interval censoring.

Most existing methodologies with regression analysis were developed under the assumption of non-informative
censoringmechanism (Zhang, Sun, & Sun, 2005). That is, the failure time and the visiting times of subjects are assumed to be
independent. However, in some situations, this assumption does not hold. For instance, when failure occurs, a patient could
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experience some symptoms prior to or together with failure. This makes the patients tend to visit the doctor earlier than
scheduled (Wang, Sun, & Tong, 2010; Zhang, Sun, Sun, & Finkelstein, 2007). Under these circumstances, it is more plausible
to expect that the exact failure time would be closer to the right endpoint of the observed interval. However, it is virtually
impossible to observe both the failure time and the visiting times simultaneously. Subsequently, testing the dependence or
independence assumption of the censoring mechanism is impossible. To circumvent these difficulties, one solution could
be to impose extra assumptions or modeling. In this article, we employ the Cox proportional hazards models with a shared
frailty effect incorporated with interval-censored data for which there exists a dependency between the failure time and
the visiting times.

Huang andWolfe (2002) have dealt with the clustered right-censored data assuming the dependence between the failure
time and the censoring time. Zhang et al. (2005, 2007) and Wang et al. (2010) have utilized frailty models to explain a
dependence structure between the failure time and the censoring times for the interval-censored data with informative
censoring. Kim and Kim (2012) recently proposed a procedure of the regression parameter estimation using the Cox
proportional hazards model with a shared frailty for the clustered interval-censored data under the assumption that both
the failure time and the censoring times are independent. In this article, we extend the arguments of Huang and Wolfe
(2002) and Kim and Kim (2012) to the clustered interval-censored data in the presence of informative censoring.

The rest of this article is organized as follow. Section 2 introduces the proposed models and their parameter estimation
procedures. Section 3 provides simulation results. The proposed method is presented with two real examples in Section 4.
Finally, brief concluding remarks are given in Section 5. All the theoretical derivations are given in the Appendix.

2. Models and parameter estimation

Let Tij denote the failure time of interest for the jth subject within the ith cluster (i = 1, . . . , n; j = 1, . . . , ni). Let Uij
and Vij be two observation times with Uij ≤ Vij. Although we cannot observe the exact failure time, Tij, it is only less than or
equal to Uij, between Uij and Vij, or greater than Vij. Define the gap time Wij as Wij = Vij − Uij if Vij is available; otherwise
Wij = ∞. Let xij be a p × 1 vector of covariates. Thus, the observed data for the jth subject within the ith cluster have the
form of

oij = (Uij, Vij, δ1ij, δ2ij, x′

ij)
′,

where δ1ij = I(Tij ≤ Uij) and δ2ij = I(Uij < Tij ≤ Vij). Subsequently, the entire observations can be expressed as o =

(o′

1, . . . , o
′
n)

′, where oi = (o′

i1, . . . , o
′

ini
)′.

Let ri be a frailty for the ith cluster. Assume that Tij’s within the ith cluster share an unobservable frailty and they
are conditionally independent given xij and ri. Suppose Tij depends on Uij and Vij (or Wij). In order to incorporate this
dependency, conditional on xij and ri, we consider the Cox proportional hazards models with a shared frailty for Tij,Uij,
and Wij, respectively, as follows:

λt(t|xij, ri) = λ0t(t) exp{β′

txij + ri}, (1)

λu(t|xij, ri) = λ0u(t) exp{β′

uxij + αuri}, (2)

λw(t|xij, ri) = λ0w(t) exp{β′

wxij + αwri}, (3)

where βt ,βu, and βw are the regression coefficients; λ0t(·), λ0u(·), and λ0w(·) are the baseline hazard functions for Tij,Uij,
and Wij, respectively; and αu and αw are unknown parameters representing the degree of dependency between Tij and Uij
and between Tij and Wij, respectively. Finally, ri is assumed to be a normal random variable with a mean of 0 and variance
θ . That is, ri ∼ N(0, θ). Further, assume that Tij,Uij, and Wij are conditionally independent given xij and ri.

Given xij and ri, the likelihood function Lij for the jth subject within the ith cluster can be expressed as follows: when
δ1ij = 1, that is, Tij is left-censored at uij and therefore Wij is right-censored at 0, noting that P(Wij > 0|xij, ri) = 1,

Lij = P(Uij = uij,Wij > 0, Tij ∈ (0, uij]|xij, ri)
= P(Uij = uij, Tij ∈ (0, uij]|xij, ri)

= P(Uij = uij|xij, ri)P(Tij ∈ (0, uij]|xij, ri); (4)

when δ2ij = 1, that is, Tij is interval-censored in (uij, vij], but Wij is exactly observed as (vij − uij),

Lij = P(Uij = uij, Tij ∈ (uij, vij],Wij = vij − uij|xij, ri)

= P(Uij = uij|xij, ri)P(Tij ∈ (uij, vij]|xij, ri)P(Wij = vij − uij|xij, ri); (5)

when δ3ij = 1 and ψij = 0, that is, both Tij andWij are right-censored at uij and 0, respectively,

Lij = P(Uij = uij,Wij > 0, Tij ∈ (uij,∞)|xij, ri)
= P(Uij = uij, Tij ∈ (uij,∞)|xij, ri)

= P(Uij = uij|xij, ri)P(Tij ∈ (uij,∞)|xij, ri); (6)
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