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a b s t r a c t

In this paper, we propose Bernstein polynomial estimation for the partially linear model
when the nonparametric component is subject to convex (or concave) constraint. We
employ a nested sequence of Bernstein polynomials to approximate the convex (or
concave) nonparametric function. Bernstein polynomial estimation can be obtained as a
solution of a constrained least squaresmethod and hencewe use a quadratic programming
algorithm to compute efficiently the estimator. We show that the estimator of the
parametric part is asymptotically normal. The rate of convergence of the nonparametric
function estimator is established under very mild conditions. The small sample properties
of our estimation are provided via simulation study and compared with regression splines
method. A real data analysis is conducted to illustrate the application of the proposed
method.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider the following semiparametric partially linear model:

Y = XTβ + ψ(Z)+ ε, (1)

where X = (X1, . . . , Xd)
T and Z are d and 1 dimensional explanatory variables respectively, β is a d × 1 vector of the

unknown regression parameters,ψ is an unknown smooth function which subjects to convex (or concave) constraint of the
formψ (2)(z) ≥ 0 (orψ (2)(z) ≤ 0), the error term ε has mean 0 and finite variance σ 2, (X, Z) and ε are independent. Convex
restriction arises in many applications, for example, convexity for production or Engle curves (Hildreth, 1954; Matzkin,
1991). The model (1) without any restriction has been extensively studied by many authors, see, for example, Bianco and
Boente (2004), Engle, Granger, Rice, and Weiss (1986), Green, Jennison, and Seheult (1985), Green and Silverman (1994),
Robinson (1988), and Schimek (2009) among many others. They investigated the asymptotic behaviors of the estimates of
the regression parameters and the smooth nonparametric component using smoothing spline, kernel smoothing, or local
linear smoothermethod, etc.Withmonotone restriction themodel (1) has also been studied in recent years, see, for example,
Huang (2002), Sun, Zhang, andDu (2012),Wright (1981), etc. However, for themodel (1)with convex (or concave) constraint
on the nonparametric component ψ(Z), it appears that no systematic study has been done on the asymptotic behavior of
the estimator of (β, ψ).
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In the nonparametric model Y = ψ(Z) + ε with ψ being convex (or concave), estimation of ψ is a basic problem in
the convex regression literature. Hildreth (1954) pioneered the constrained least squares method to estimate a concave
function, and Fraser and Massam (1989) and Wu (1982) proposed efficient algorithms to compute the estimator. Aït-
Sahalia and Duarte (2003) have also considered a decreasing and convex function with certain bounds on the derivative.
Groeneboom, Jongbloed, and Wellner (2001), Hanson and Pledger (1976) and Mammen (1991) derived several asymptotic
rates of convergence. Alternative approaches which combine convex restriction and smoothing process have also been
proposed, for example, kernel-based estimator (Birke & Dette, 2007), spline-based estimator (Meyer, 2008) and Bernstein-
polynomial-based estimator (Chang, Chien, Hsiung, Wen, & Wu, 2007; Wang & Ghosh, 2012).

In the present paper, we extend nonparametric model to the semiparametric partially linear model (1) with ψ being
convex (or concave). We make use of Bernstein polynomial to approximate the nonparametric component. The desired
convex (or concave) constraint can easily be imposed by imposing suitable linear constraints on the parameters of the
basis functions. Thus, Bernstein polynomial estimation can be obtained as a solution of a constrained least squares method
and hence we employ a quadratic programming algorithm to compute efficiently the estimator. The convex (or concave)
constraint is maintained for any finite sample size and satisfied over the entire domain of the nonparametric function.

The rest of the paper is organized as follows: The convex (or concave) restricted Bernstein polynomial estimator (β̂n, ψ̂n)
is presented in Section 2. Asymptotic results are given in Section 3. The small sample properties of our estimation are
provided via simulation study and compared with convex (or concave) restricted regression splines, and a real data analysis
is conducted to illustrate the application of the proposed method in Section 4. The proofs of asymptotic results are sketched
in the Appendix.

2. Convex-restricted Bernstein polynomial estimator

Without the loss of generality, we assume that the domain of ψ lies in the unit [0, 1]. Let

F = {ψ : ψ is convex function on [0, 1]}.

Let (Y1,X1, Z1), . . . , (Yn,Xn, Zn) be a set of observations which are assumed to be independently and identically distributed
(i.i.d) as (Y ,X, Z) satisfying model (1). Let (β0, ψ0) be the true value of the parameter, which minimizes the L2 risk (Gyorfi,
Kohler, Krzyzak, & Walk, 2002):

M(β, ψ) = E(Y − XTβ − ψ(Z))2,

where β belongs to a convex and compact subsetΘ ⊂ Rd and ψ ∈ F satisfies convex restriction. The L2 empirical risk is

Mn(β, ψ) =
1
n

n
i=1

(Yi − XT
i β − ψ(Zi))2, (2)

subject to β ∈ Θ and ψ ∈ F .
For a continuous function such as ψ(Z) on [0, 1], the approximating Bernstein polynomial of order N is given by

B(Z;N, ψ) =

N
j=0

ψ


j
N


C j
N(Z)

j(1 − Z)N−j
=

N
j=0

αjbj(Z,N),

where bj(Z,N) =


N
j


Z j(1 − Z)N−j are the Bernstein basis polynomials and αj = ψ(

j
N ) are corresponding coefficients,

j = 0, 1, . . . ,N . By theWeierstrass theorem, B(·;N, ψ) → ψ(·) uniformly over [0, 1] as N → ∞ (Lorentz, 1986). Since the
second derivative of B(Z;N, ψ) can be written as

B′′(Z;N, ψ) = N(N − 1)
N−2
j=0

(αj+2 − 2αj+1 + αj)bj(Z,N − 2),

the convex restriction is satisfied provided that αj+2 + αj ≥ 2αj+1, j = 0, . . . ,N − 2. Adopting the method of sieves, we
consider the constrained Bernstein polynomial sieve FN as follows:

FN =


BN(Z) =

N
j=0

αj · bj(Z,N) : αj+2 + αj ≥ 2αj+1, j = 0, . . . ,N − 2,
N
j=0

|αj| ≤ LN


,

for N = 1, 2, . . .. Each element in the sieve FN preserves the desired convex restrictions. The sequence of sieves FN is
nested in F , i.e., F1 ⊂ F2 ⊂ · · · ⊂ FN ⊂ F ⊂ L2[0, 1] and


∞

N=1 FN is dense in F with respect to sup-norm (Wang &
Ghosh, 2012).

By replacingψ(Z) by
N

j=0 αj · bj(Z,N) in the L2 empirical risk (2), we obtain the Bernstein polynomial L2 empirical risk
function,

Mn(α,β) =
1
n

n
i=1


Yi − XT

i β −

N
j=0

αjbj(Zi,N)

2

, (3)
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