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a b s t r a c t

This paper presents a new technique to analyze a stochastic frontiermodelwhen covariates
are incorporated with measurement errors. We propose a semiparametric mixture likeli-
hood method to estimate the stochastic frontier model which is free from any erroneous
specification of the distribution of latent covariates. Some numerical studies including a
real data analysis were done, which highly support the proposed approach.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

The performance of a decisionmaking unit (DMU) can be assessed by computing the efficiency of its production activities.
Suppose we observe a firm producing an output of level y ∈ R manipulating input quantities x ∈ Rp. Then the efficiency
of the firm is analyzed by comparing y with the feasible maximal output level that can be achieved by using the input
amount of x. Given an input level of x we may define the maximum level of y, say g(x), as a function of x, and we call it
the production function or the frontier function. Once the production function is given, the efficiency of a production plan
(x, y) can be evaluated by the distance from this point to the production frontier. However, since the production frontier
is usually unknown, the production frontier should be estimated by the observed production activities of DMU’s. For this,
Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977) introduced the stochastic frontier (SF) model
as follows:

Y = g(X |β) − U + V , (1)
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where Y is the output quantity produced using input quantities X , g is the production frontier parameterized by a vector
β, U is a nonnegative inefficiency factor and V is an error variable. Let Xn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be a random
sample from the distribution of (X, Y ) ∈ Rp

× R. Using Xn, one may estimate g (or β) and other parameters involved in the
model under some reasonable parametric distributional assumptions on U and V by the maximum likelihood estimation
procedure.

For example, consider a linear SF model with p = 1:

g(x|β) = β0 + β1x, U ∼ N+(0, σ 2
u ), V ∼ N(0, σ 2

v ) (2)

where β = (β0, β1), σu > 0 and σv > 0 are unknown parameters. Then, the log-likelihood function is given by

ℓn(β0, β1, σu, σv|Xn) = −n log σ −
1
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where ϵi = Yi−β0−β1Xi, λ = σu/σv , σ 2

= σ 2
u +σ 2

v , andΦ is the cumulative distribution function ofN(0, 1). Themaximum
likelihood (ML) estimator of (β0, β1, σu, σv) is defined by themaximizer of this. Wemay alter the distributional assumption
on the inefficiency factor U to other distributions such as exponential, gamma, and so on. See Kumbhakar and Lovell (2000)
for details.

The stochastic frontier model (1) assumes that the input variable X is measured perfectly so that it is not involved with
any errors, which would become easily infeasible in practice. This paper considers an errors-in-variables (EIV) version of SF
model:

Y = g(ξ|β) − U + V , X = ξ + W (3)

where Y is the output quantity produced using input quantities, ξ is the true (but latent) measurement of input variables,
X is the observed inputs, g is a parametric frontier function, U is a nonnegative inefficiency factor, and V and W are error
variables. In this setting, like in usual regressionproblems, a naiveMLestimationbased on (X, Y ) ignoring bW is problematic.
Fig. 1 provides an empirical evidence of this. According to the linear SF model in (2), we conducted 1000 Monte Carlo
experiments to obtain the deviations of the parameter estimates and their targeted true values in both no-errors-in-variable
case and with-errors-in-variable case. For each experiment, the sample size was 500 and the covariates were generated by
ξ ∼ Exp(1) and X = ξ + W with W ∼ N(0, 1). The true parameter values used in the experiments were β0 = 1,

β1 = 1, σu =


2π

π−2 and σv = 1. It is commonly observed in each panel of Fig. 1 that, while the ML estimation for the data
withoutmeasurement errors works quite well (left), the naiveML estimation collapses when the data are incorporatedwith
measurement errors (right).

To the best of our knowledge, Chen andWang (2004) is almost the first paper that carefully dealt with the measurement
error problem in the stochastic frontier analysis. They suggested a method of moments (MoM) estimator for the linear
stochastic frontier model to find all model parameters, and it works at least better than the usual maximum likelihood
method that does not consider measurement errors in covariates. However, it suffers from the limitations in application
by the additional assumptions such as the statistical independence among the latent variables ξ = (ξ1, ξ2, . . . , ξp) and the
asymmetry of the distributions of ξj’s, which can hardly be verified in practice since ξ is not directly observable. Recently,
Chang, Chen, andWang (2012) proposed a Bayesian approach to improveMoM estimator. However, they assumed a normal
distribution for the latent covariates which would suffer from a mis-specification problem.

In this paper, we propose a new method to estimate the model in (3) which is free from a mis-specification of the
probabilistic model for the latent variable ξ. The proposed approach is semiparametric in that the distribution of ξ can
be considered as a nonparametric component in the model since it is completely unspecified. Also, the proposed method
can be applied to the model with any parametric form of the frontier function g and with any distributional assumptions on
the inefficiency factor U . The agenda of the paper is as follows. In Section 2, we propose a semiparametric mixture approach
and describe the estimation procedure. Section 3 presents the results from some simulation studies and real data analysis,
and Section 4 concludes the paper.

2. The method

2.1. The semiparametric mixture model

Recall the stochastic frontier model with errors-in-variables:

Y = g(ξ|β) − U + V , X = ξ + W (4)

where (X, Y ) = (X1, X2, . . . , Xp, Y ) is the vector of observed p-inputs and an output, ξ = (ξ1, ξ2, . . . , ξp) is the latent
input variables, g is the production frontier parameterized by β ∈ Rd, U is a nonnegative inefficiency factor, and V
and W = (W1,W2, . . . ,Wp) are the error variables. For technical convenience, W is assumed to be independent of
(ξ,U, V ). Also, we assume the normality of the error variables, i.e., V ∼ N(0, σ 2

v ) and W ∼ Np(0p, diag(σ 2
w1

, . . . , σ 2
wp

)),
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