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a b s t r a c t

Even under assumption of normality, likelihood-based inferences are often difficult for
large and irregularly spaced spatial datasets. Exact calculations of the likelihood for a Gaus-
sian spatial process observed in n locations require O(n3) operations. Instead of Whittle’s
approximation to the Gaussian log likelihood for large spatial datasets, this paper intro-
duces an approximated likelihood function of spatial parameters based on the correlogram,
which involves no calculation of determinants and is computationally feasible. The pro-
posed likelihood approximation method for spatial parameter is applied to the estimation
of the spatial structure of changes in the average summer temperature based on 30 years
of data by using an regional climate model (RCM) with a particular global climate model
(GCM) boundary condition. The results verify the benefits and the performance of the pro-
posed method.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Estimating the spatial covariance structure of huge datasets is fundamental to geostatistics but is also difficult because
of heavy computational burdens. Under the assumption of normality, calculating the exact likelihood function requires
O(n3) operations, where n is the number of observations. Based on a complete regular lattice, the likelihood function can
be computed with fewer calculations by using spectral methods (Dahlhaus & Küsch, 1987; Guyon, 1982; Stein, 1995, 1999;
Whittle, 1954). However, themethods based on the likelihood approximation proposed byWhittle (1954) cannot be applied
to data that are irregularly spaced or are not on a complete regular lattice. Because any joint density can be written as the
product of conditional densities based on some ordering of observations, anotherway to reduce computational burdens is to
condition only particular neighbors of observations when computing the conditional density. Stein, Chi, and Welty (2004)
adopt this approach to approximate the restricted likelihood function and demonstrate how the estimation of equations
allows for the evaluation of the efficacy of the resulting approximation.

Recently, Fuentes (2007) considered a version of Whittles approximation to the Gaussian log likelihood for spatial
regular lattices with missing values and for irregularly spaced datasets. Alternatively, Kaufman, Schervish, and Nychika
(2008) proposed themethod of covariance tapering to approximate the likelihood in large spatial dataset. In their approach,
covariance matrices are ‘‘tapered’’, or multiplied element wise by a sparse correlation matrix. The resulting matrices can
then bemanipulated using efficient sparse matrix algorithms. Sang and Huang (2012) introduced a full scale approximation
to the covariance function of a spatial process that facilitates efficient computation with very large spatial datasets. Another
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possible approach is to consider a multi-resolution Gaussian Markov random field and take advantage of the fact that the
basis is organized as a lattice.

In general, Whittle’s approximation to the Gaussian process can be applied to lattice data. This paper introduces the
approximated likelihood function of spatial parameters based on a correlogram. The proposed method does not involve
the calculation of determinants with huge dimensions and is attractive in that it is very simple, computationally efficient,
and fast in comparison to the exact likelihood approach. Compared to other approximation approaches (e.g. Stein et al.,
2004, Kaufman et al., 2008, Fuentes, 2007 and Sang & Huang, 2012), the proposed method does not require tapering (gives
less weight to boundary observations) before approximation and it is straightforward, flexible and provides enormous
computational benefits for both complete or incomplete and regularly or irregularly spaced observations. The proposed
likelihood approximationmethod for spatial parameter is applied to the estimation of the spatial structure of changes in the
average summer temperature based on 30 years of data by using an regional climate model (RCM) with a particular global
climate model (GCM) boundary condition.

2. Correlogram and its properties

A correlogram is a function showing correlations between sample points separated by the distance d (see Friendly, 2002).
The correlation usually decreases with an increase in the distance until it reaches zero. A correlogram is estimated using the
equation:

ρ(d) =


i<j

ZiZj − NdM2
d

Nds2d
, (1)

where Zi and Zj are stochastic variables in two locations separated by the lag distance d; the summation is performed over
all pairs of samples separated by the distance d; Nd is the number of pairs of samples separated by the distance d; and Md
and sd are the mean and standard deviation of samples separated by the distance d (each sample is weighted by the number
of pairs of samples in which it is included). This is an omnidirectional correlogram, and here the word ‘‘omnidirectional’’
implies that there is no need to address the direction of the lag d. If a correlogram depends on the direction, then the spatial
pattern is called anisotropic. If no anisotropy is detected, then it is possible to use the omnidirectional correlogram. Other
measures of spatial dependence are the covariance function and the variogram (= semivariogram). The correlogram, the
covariance function, and the variogram are related.

Assume that Z(s), s ∈ ℜ
k follows a Gaussian process with the correlation function rθ(·). For any two variables Z(s) and

Z(s′) with the distance d = |s − s′| for s, s′ ∈ ℜ
k, there exists a function C satisfying

rθ(d) = CFd(Z(s), Z(s′); d),

where Fd is the bivariate normal distribution function induced by the Gaussian random field. In general, it is assumed that
the function C can be parametrically modeled. For example,

rξ,ν(s, s′) =
(d(s, s′)/ξ)ν

2ν−1Γ (ν)
κν(d(s, s′)/ξ), (2)

which is the Matérn correlation function (Matérn, 1986) with parameters θ = (ξ , ν), evaluated at d(s, s′). Because the
Matérn correlation function is positive definite inℜ

2, rξ,ν(d) is a valid periodic correlation function on [0, 1] (Yaglom, 1987).
Then the corresponding covariance matrix of Z(s) can be expressed as 6(s, s′) = σ 2rξ,ν(s, s′). Note that the distance space
D is finite in general and that this approach is computationally efficient, particularly when the spatial domain is defined on
grid points. Also note that rθ(d) is a correlation function and ρ(d) is an empirical correlogram evaluated at d.

Let Pd be a set of pairs of Z(s) and Z(s′) with d(=|s− s′|). By the stationarity of the Gaussian random field Z , any element
of Pd can be considered as a random sample from Fd. Let F̂d be the corresponding empirical distribution of samples of size
nd from Fd. For a given value of σ 2,

ρ(d) = CF̂d
(Z(s), Z(s′); d).

Then it can be easily checked for given σ 2 that

ρ(d) = CF̂d
(Z(s), Z(s′); d) → CFd(Z(s), Z(s′); d) = rθ(d) as nd → ∞.

It is well known that F̂d → Fd almost surely and uniformly in (Z(s), Z(s′)). In particular, the central limit theorem of ρ(d)
makes the bootstrap approximation more accurate under the weak condition. Therefore, this leads to

ρ(d) ∼ N(rθ(d), σ 2
d ) (3)

or

log


1 + ρ(d)
1 − ρ(d)

∼ N


log


1 + rθ(d)
1 − rθ(d)

,
1

nd − 3


, (4)



Download English Version:

https://daneshyari.com/en/article/1144565

Download Persian Version:

https://daneshyari.com/article/1144565

Daneshyari.com

https://daneshyari.com/en/article/1144565
https://daneshyari.com/article/1144565
https://daneshyari.com

