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a b s t r a c t

We propose a new regularized estimator called the scaled ridge estimator. The scaled ridge
estimator is amodified version of the ridge estimator devised to reduce the bias of the ridge
estimator by multiplying a positive constant to the ridge estimator. We show theoretically
as well as numerically that the scaled ridge estimator performs better than the ridge
estimatorwhen the covariates are highly correlated and the true regression coefficients are
similar. A motivational example is an ensemble approach for climate prediction based on
the global circulation model. By analyzing data sets of monthly precipitation of 10 cites in
South Korea,we illustrate that the scaled ridge estimator is a useful and efficient alternative
to other competitors for ensemble climate prediction.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

The ridge estimator of Hoerl and Kennard (1970) removes instability of the ordinary least square (OLS) estimator
successively, in particular when covariates are highly correlated. Even though it sacrifices the unbiasedness, the ridge
estimator reduces the variance much to improve the overall predictability. It is well known that the ridge estimator can
be obtained by the penalized least square estimator with the ridge penalty that is the square of the l2 norm of the regression
coefficients.

Even though it is simple, however, the ridge estimator might not be optimal in prediction and could be improved further.
In this paper, we propose a modification of the ridge estimator so called the scaled ridge estimator which is obtained by
multiplying a constant larger than 1 to the ridge estimator. Note that the ridge estimator has a bias since it is a shrinkage
estimator toward 0. By multiplying a constant larger than 1, the amount of the shrinkage is reduced and hence the scaled
ridge estimator may have less bias than the ridge estimator. We prove theoretically as well as numerically that the mean
squared error (MSE) of the scaled ridge estimator is less than that of the ridge estimator for certain cases.

A motivational example of the scaled ridge estimator is an ensemble approach for climate prediction based on the
global circulation model (GCM). Global circulation models are the models that can generate meteorological variables under
various emission scenarios. They havewell explained the past variations of climate and are used in predicting future climate.
Assessment reports of the Intergovernmental Panel on Climate Change (IPCC, 2007) is a main reference for GCMs.

One of the important problems in using GCMs for predicting future climate is that large uncertainties exist in GCMs. For
example, GCMs are sensitive to the change of emission scenarios (Mearns et al., 2001). During the last decades, ensemble
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prediction based on GCMs has became an important part of climate prediction as a tool of reducing the uncertainty. There
are various ways to combine different GCMs to predict. The simplest approach is to assign the equal weights to GCMs and
take the simple average (Lambert & Boer, 2001; Sperber et al., 2004). A more sophisticated approach is to use a multivariate
linear regression model where the values simulated by GCMs are treated as covariates and observed data as responses.
The regression coefficients obtained from the regression model are used to assign weights to GCMs. In general, ensemble
prediction based onmultivariate linear regression approaches tend to outperform other ensemble approaches and has been
studied extensively by Gneiting, Raftery, Westveld, and Goldman (2005), Kharin and Zwiers (2002), Krishnamurti et al.
(1999), Krishnamurti et al. (2000) and Unger, Van Den Dool, O’Lenic and Collins (2009).

However, the standard least square estimator would not be optimal for ensemble prediction since values generated from
GCMs tend to be highly correlated. High correlations are expected since various GCMs simulate the common meteorolog-
ical variable such as temperature or precipitation. It is well known that the variance of the least square estimator is large
when the covariates are highly correlated. To reduce the variance of the least square estimator, the ridge estimator is a
useful alternative, which is known to outperform the least square estimator in particular when the covariates are highly
correlated. However, the ridge regression itself is not fully satisfactory because it produces seemingly unnecessary bias in
prediction, and this is the main motivation for developing the scaled ridge estimator. By analyzing climate data, we em-
pirically show that the scale ridge estimator is superior to the OLS estimator as well as the ridge estimator for ensemble
prediction.

The paper is organized as follows. We propose the scaled ridge estimator and study various properties in Section 2, and
simulation results are given in Section 3. Analysis of real climate data is presented in Section 4 and concluding remarks
follow in Section 5.

2. Scaled ridge estimator

Let (x1, y1), . . . , (xn, yn) be n covariate-response variable pairs where xi ∈ X and yi ∈ R, where X is a subset of Rp.
We assume that the response is centered and the predictors are standardized:

n
i=1 yi = 0,

n
i=1 xij = 0,

n
i=1 x

2
ij = n for

j = 1, . . . , p.

2.1. Definition

Recall that the ridge estimator is defined as

β̂
r
(λ) = argmin

β

1
n

n
i=1

(yi − x′

iβ)2 + λ

p
j=1

β2
j .

The main idea of the ridge estimator is to reduce the variance while sacrificing the bias. Hence, the gain of the ridge
estimator compared to the OLS estimator is large when the variance of the OLS estimator is large. However, since there
is only one regularization parameter, the ridge estimator may not optimally control the variance and bias simultaneously.
Thus, it would be useful to have an estimator in between the ridge and OLS estimator. For this purpose, we propose a new
regularized estimator so called the scaled ridge estimator, which is defined as

β̂
s
(λ, a) = (1 + a)β̂

r
(λ)

for a > 0. The scaled ridge estimator reduces the variance compared to the OLS estimator by using the ridge estimator, but
it reduces the bias compared to the ridge estimator by rescaling the ridge estimator by multiplying (1 + a).

The scaled ridge estimator is related to the elastic net (Enet) estimator of Zou and Hastie (2005). Without the l1 penalty,
the Enet estimator is equal to the scaled ridge estimator with a = λ. Zou and Hastie (2005) showed that the Enet estimator
converges to the univariate estimator as λ → ∞, where the univariate regression estimator defined as

β̂ur
j = argmin

γ

n
i=1

(yi − γ xij)2

=

n
i=1

yixij.

The univariate regression estimator, however, may not be optimal in cases where covariates are highly correlated. Consider
an extreme situation where p = 2 and xi1 = xi2 for all i. Suppose that the true model is yi = xi1 + xi2 + ϵi. That is, the
true regression coefficient vector β∗ is β∗

= (1, 1)′. Since xi1 = xi2, it is easy to see that E(β̂ur
j ) = 2 for j = 1, 2. Hence,

the predictor ŷi = β̂ur
1 xi1 + β̂ur

2 xi2 based on the univariate regression estimator has E(ŷuri ) = 2(xi1 + xi2), which is twice
larger than the expectation of the optimal prediction that is xi1 + xi2. In fact, the optimal estimator of β is given as β̂ur

j /2 for
j = 1, 2, which is the OLS estimator assuming equal regression coefficients. The scaled ridge estimator resolves this problem
by setting a at other than λ.
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