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a b s t r a c t

In this paper, We first demonstrate that the orthogonal property of main effects plans
orthogonal through the block factor (Bagchi, 2010) remains unchanged under level
permutation. However, level permutation of factors could alter their geometrical structures
and statistical properties. Hence uniformity is used to further distinguishmain effects plans
orthogonal through the block factor (POTB). Amodified optimization algorithm is proposed
to search uniform or nearly uniform POTBs and many new optimal POTBs with lower-
discrepancy are obtained.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Main effects plans (MEP) occupy an important position inmany industrial experimentswhen interest lies only in themain
effects, assuming that all interactions between factors are negligible. An orthogonal MEP (OMEP) permits the estimation of
all main effects of a factorial arrangement without correlation. Main-effect contrasts of a factor can be estimated directly in
an OMEP. Moreover, the sum of squares for a factor can be simply calculated without adjustment for any other factors. An
orthogonal array provides the most desirable MEP in terms of simplicity as well as precision. Two factors, F1 and F2 (with s1
and s2 levels, respectively), of an MEP Dwith n runs are said to be orthogonal (to each other) if they satisfy the proportional
frequency condition (PFC) of Addelman (1962), which is stated as follows:

PFC: Let F1 and F2 be two factors in an MEP D. For every i = 0, 1, . . . , s1 − 1 and every j = 0, 1, . . . , s2 − 1, the number
of runs in which factor F1 is at level i and factor F2 is at level j is proportional to the product of the frequencies of level i of
F1 and level j of F2. An MEP D is said to be an OMEP if any two of its factors are orthogonal. OMEPs with each factor having
equal frequency are usually derived from the widely known orthogonal arrays.

It is known that the only problem with an OMEP is that the plan often requires a large number of runs, particularly for
mixed-level plans. Thus, many alternative approaches can be found in the literature. Such as ‘‘nearly orthogonal’’ arrays
(e.g., Ma, Fang, & Liski, 2000; Wang &Wu, 1992), MEPs with blocks (e.g., Mukerjee, Dey, & Chatterjee, 2002), MEPs in which
the treatment factors are pairwise orthogonal through the block factor (Bagchi, 2010; Bose & Bagchi, 2007). Among them,
Bagchi (2010) obtained saturated plans orthogonal through the block factor (POTB) for a s3m23m experiment. Herein, s3m23m
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Table 1
D1 is the three-level part of a 3323 POTB from Bagchi (2010) and D2 is obtained by
permutations based on D1 .

A dummy block factor D1 D2

F1 F2 F3 F1 F2 F3

Batch 1 0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 2 0 0
1 1 0 2 1 1

Batch 2 1 1 1 2 1 0
1 2 2 2 2 2
2 1 2 1 1 2
2 2 1 1 2 0

Batch 3 2 2 2 1 2 2
2 0 0 1 0 1
0 2 0 0 2 1
0 0 2 0 0 2

indicates that the plan contains 3m factors of s levels and 3m factors of two levels. Moreover, it has sm blocks of size 4 each.
Note that the run size of a POTB is much smaller than the one of an orthogonal MEP. In such plans, the s-level factors are
nonorthogonal to the block factor but are pairwise orthogonal through the block factor. The two-level factors are orthogonal
to the block factor. A construction method for a saturated connected POTB D for a 33m23m experiment in 3m blocks of size 4
each and the corresponding ANOVA table for data analysis can be found both in Bagchi (2010).

The article proceeds as follows. Section 2 first gives an example to illustrate our motivation and then introduces
some basic concepts and notations of POTBs. Section 3 establishes a relationship among POTBs via level permutations.
Construction via optimization algorithms for both s3m23m and sm̃23m(m̃ < 3m) POTBs are discussed in Section 4. By
permutation levels of existing POTBs, we obtain many new low-discrepancy designs which outperform those constructed
in Bagchi (2010). Conclusions will be drawn in Section 5.

2. Preliminary

2.1. Motivation

For example, consider an experiment to study the thinning effect in Bagchi (2010). Five factors are considered:
concentration of lubricants (F1), thickness of lubrication (F2), thickness of the door (F3), punch speeds (F4), and intensities of
force (F5) on the outer portions of the panel. Factors F1, F2 and F3 have three levels, whereas F4 and F5 have two levels. Bagchi
(2010) used a 3323 POTBwith 12 runs in blocks of size 4 each. It can be constructed as follows. LetHm be an orthogonal array
with m rows,m − 1 columns, two symbols, and strength 2. Such as,

H4 =

0 0 0
0 1 1
1 0 1
1 1 0

 .

Then let Bl = [H4 ⊕ l (mod 3) H4], l = 0, 1, 2. Matrix H4 ⊕ l (mod 3) denotes the array obtained by adding l (mod 3) to
each entry of H4. Hence, plan (B′

1 B
′

2 B
′

3)
′ is a 3323 POTB, whose three-level columns (denoted by D1) are listed in Table 1.

Design D2 in Table 1 is obtained by level permutations of factor F1 (map (0, 1, 2) to (0, 2, 1)) and factor F3 (map (0, 1, 2)
to (1, 0, 2)). It can be verified that both designs satisfy condition (1) in Section 2 and therefore are POTBs. However, their
geometrical structures could be different by level permutation. Design D1 contains the center point with all ones, while D2
does not.

It is well known that geometrically nonisomorphic designs have different statistical properties due to their different
geometrical structures (Cheng &Wu, 2001; Cheng & Ye, 2004). To further distinguish geometrically nonisomorphic designs,
uniformity is one of the mostly used criteria to compare the performance of geometrically nonisomorphic designs. More
recently, Tang and Xu (2013), Tang, Xu, and Lin (2012) and Xu, Zhang, and Tang (2014) also used uniformity to compare
fractional factorial designs via level permutations.

Motivated by the ideas explicitly exhibited in the aforementioned papers, we combine the ideas of level permutation
and POTB and propose to construct uniform POTB via level permutations. Since there is no difference by permutations for
two-level designs. Hence, in this paper, we mainly focus on the high-level part of POTBs.

2.2. POTB

In this subsection,We give some notations and background. Following Bagchi (2010), consider a planD for an experiment
with factors F1, F2, . . . , (possibly including a block factor L) at s-level onN runs. Let an N × smatrixXF1 denote the incidence
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