
Journal of the Korean Statistical Society 44 (2015) 632–645

Contents lists available at ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

Sharp optimality for regression with real-time data
Zhi-Ming Luo a, Jeongcheol Ha a,∗, Tae Yoon Kim a, Inho Park b

a Department of Statistics, Keimyung University, Daegu 704-701, South Korea
b Department of Statistics, Pukyong National University, Busan 608-737, South Korea

a r t i c l e i n f o

Article history:
Received 5 November 2014
Accepted 22 April 2015
Available online 14 May 2015

AMS 2000 subject classifications:
primary 62G20
secondary 62G05

Keywords:
Minimax
Optimal rate of convergence
Exact constant of convergence
Real-time data

a b s t r a c t

A minimax estimator for a nonparametric regression model is proposed when real-time
data are assumed and its asymptotic behavior of minimax risk in the sup-norm for the
Hölder function class is studied. The optimal rate of convergence and exact minimax
constant are found for the estimator.
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1. Introduction and the main result

Minimax estimation is one of the most powerful statistical theories which seeks the best estimator in terms of minimax
risk for a given model setting. The optimal rates of convergence in terms of minimax risk have been obtained for various
model settings (Ibragimov & Hasminskii, 1981, 1982; Koo, 1993; Stone, 1982; Tsybakov, 2004), however, only a few exact
constants of convergence in a ‘sharp’ asymptotical minimax sense are obtained. The first exact constant is the Pinsker
constant (Pinsker, 1980) in L2 minimax risk for Sobolev function class under the Gaussian white noise model. Korostelev
(1993) obtained the exact constant of optimal convergence for the Gaussian nonparametric regression model with fixed
design. Later Korostelev andNussbaum (1999) obtained the constant for nonparametric density estimation andBertin (2004)
obtained the constant for the nonparametric regression model with random design.

The nonparametric regression model considered by Korostelev (1993) is
Yi = f (i/n)+ ξ(i), i = 1, . . . , n, (1)

where the ξ ’s are independent Gaussian (0, σ 2) random variables. In this model, the design points become closer among
themselves as the sample size increases; yet, the error process remains the same. As Kim and Luo (2010) pointed out, the
model (1) has some limitations, however. Indeed (i) it assumes a fixed bounded time domain [0, 1] and hence does not
allow the time flow to infinity, and (ii) the error dependence structure is independent of the distance between the design
points. They notice that these limitations are to be resolved by employing the regressionmodel with real-time data because
real-time data are defined as a sequence of observations made on the finer grid of time going to infinity. By keeping this in
mind, they proposed an extended model

Yi = f (i/na)+ ξ(i/naθ ), i = 1, . . . , n, (2)
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where f (·) is an unknown nonparametric regression function with domain (0,∞) and {ξ(t)} is a zero-mean strictly
stationary Gaussian sequence with a variance–covariance structure, cov[ξ(i/naθ ), ξ(j/naθ )] = σ 2ρ |j−i|/naθ where 0 < ρ <
1, 0 < a ≤ 1, and 0 ≤ θ < 1. As an example of the processes under consideration of this paper, the following is provided.

Example. For given n, consider the Ornstein–Uhlenbeck velocity process Xt on (0,∞) which satisfies the stochastic
differential equation (Arnold, 1974)

dXt = −n(1−θ)aXtdt +

√

2n(1−θ)aσ 2dWt

with an initial random variable X0 ∼ N(0, σ 2), where Wt is the standard Wiener process. Then Xt is a stationary Gaussian
process with so-called colored noise

EXt = 0,

EXtXs = σ 2e−n(1−θ)a|t−s|.

Now the Ornstein–Uhlenbeck position process Yt is defined as

Yt = Y0 +

 t

0
f (s)ds +

 t

0
Xsds,

where the initial random variable Y0 is a constant and f is a smooth function. For a small increment∆ > 0 we have

Yt+∆ − Yt

∆
=

1
∆

 t+∆

t
f (s)ds +

1
∆

 t+∆

t
Xsds.

Letting

y(t) =
Yt+∆ − Yt

∆
and ξ(t) = Xt ,

we have an approximation

y(t) ≈ f (t)+ ξ(t).

Again letting yi = y(i/na) and ξi = ξ(i/na) (i = 1, . . . , n)with frequency na from [0, 1] we have an approximation

yi ≈ f (i/na)+ ξi

which follows model (2) with variance–covariance structure, cov[ξi, ξj] = σ 2e−|j−i|/naθ .

It is easy to see that model (2) not only allows the time flow to infinity but the dependence structure might also be
directly influenced by the distance between the design points. Note here that θ = 0 indicates that the error dependence
structure is free of the design points, whereas θ = 1 indicates that the error dependence structure is entirely dependent on
the design points. It turns out that the nonparametric regression estimator is not applicable when θ = 1 or a = 0. Refer to
Kim and Luo (2010).

In this paper, wewill focus on theminimax property of the nonparametric regression estimator of the unknown function
f for model (2). Let β and L be some positive constants and ℓ = ⌊β⌋ be the greatest integer strictly less than β . The Hölder
class of functionsΣ(β, L) is defined as

Σ(β, L) =

f : |f (ℓ)(x)− f (ℓ)(x′)| ≤ L|x − x′

|
β−ℓ, ∀x, x′

∈ [0,∞]

.

Suppose that the function f ∈ Σ(β, L) ∩ S where

S =

f (x)


|f (x)| ≤

C
(1 − a)β/(2β+1)


log x

xa(1−θ)/(1−a)

β/(2β+1)

, as x → ∞, if 0 < a < 1

f (x) = 0, for x > 1, if a = 1


and C above is the exact constant of convergence specified in Theorem 1.Σ(β, L) ∩ S is a quite generalization of

Σ1(β, L) =

f : |f (ℓ)(x)− f (ℓ)(x′)| ≤ L|x − x′

|
β−ℓ, ∀x, x′

∈ [0, 1]


imposed by Korostelev (1993) since Σ1(β, L) ⊂ Σ(β, L) ∩ S. Note that S consists of functions bounded by a rapidly de-
creasing function on (0,∞)whileΣ1(β, L) is a set of integrable functions on [0, 1].

Let the loss functionω(u), u ≥ 0, be a continuous increasing function such thatω(0) = 0,ω ≠ 0 andω(u) ≤ W0(1+uγ )
with some positive constantsW0 and γ , i.e., ω(u) has a polynomial upper bound. We introduce the minimax risk

Rn = Rn(ω(·);β, L; a, θ, ρ, σ 2) = inffn sup
f∈Σ(β,L)∩S

Efω(ψ
−1
n ∥fn − f ∥∞) (3)

where the infimum is taken over all estimators of f based on observations Y1, . . . , Yn,Ef means the expectationwith respect
to the probability measure of observations Y1, . . . , Yn depending on f , ψn is the optimal rate of convergence to be specified
later and ∥ · ∥∞ is the sup-norm given by ∥f ∥∞ = supx≥0 |f (x)|.
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