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a b s t r a c t

In this paper, we study some asymptotic properties of a new estimator of the probability
density function of the driven noise in a nonparametric functional autoregressive model.
This density estimator, based on the kernel method, does not require the estimation of the
residuals of the model (as in the usual plug-in estimator). We prove its pointwise consis-
tencywith rate and establish amultivariate central limit theorem, without any assumption
on the noise distribution tail. Theoretical results are illustrated with some simulation ex-
periments. We finally propose a goodness-of-fit test of the error distribution, built from
a normalized sum of the quadratic deviation between the true density and its estimator
evaluated on a finite set of distinct points.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

The model validation is an important issue when modeling time series. In particular, analyzing residuals is a crucial step
in this validation. For example, to check the assumption about Gaussian distribution, one may perform a histogram of the
residuals or directly estimate their density. Kernel-based methods, as initiated by Parzen and Rosenblatt, are among the
most common nonparametric methods used to that purpose. There is a huge literature on kernel density estimation in the
context of the independent and identically distributed sample or mixing processes, see for example Devroye and Lugosi
(2001) and Silverman (1986). But, when dealing with regression or autoregressive models, the driven noise is not observed.
This makes the density estimation and the study of its properties more complex. The probability density function (pdf for
short) can only be estimated through the residual errors calculated from the estimation of the unknown component of the
model. This one shall thus be estimated with an appropriate convergence rate to induce good properties to the residual
error. A common noise density estimator is the Parzen–Rosenblatt kernel estimator, based on this residual error which is
then considered as a noise predictor.

Good properties have been proved with this estimation procedure in the framework of parametric models. Chai, Li,
and Tian (1991) proved the uniform strong consistency on R of the noise kernel density estimator (KDE for short) in the
linear regression case. In the parametric autoregressive case, Cheng (2005) showed that the asymptotic distribution of the
maximumof a suitably normalized deviation of the density estimator from the expectation of the kernel error density (based
on the true error) is the same as in the case of the one sample set up, which is given in Bickel and Rosenblatt (1973). These
results are extended in Cheng (2010) to the nonlinear case, for which almost sure uniform convergence of the KDE and

∗ Corresponding author.
E-mail address: bruno.portier@insa-rouen.fr (B. Portier).

http://dx.doi.org/10.1016/j.jkss.2015.04.005
1226-3192/© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jkss.2015.04.005
http://www.elsevier.com/locate/jkss
http://www.elsevier.com/locate/jkss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jkss.2015.04.005&domain=pdf
mailto:bruno.portier@insa-rouen.fr
http://dx.doi.org/10.1016/j.jkss.2015.04.005


N. Hilgert, B. Portier / Journal of the Korean Statistical Society 44 (2015) 646–660 647

asymptotic normality results are also obtained by Liebscher (1999). Convergence rates are improved by Müller, Schick, and
Wefelmeyer (2005) with the use of weighted kernel density estimators. A recent work was also published by Kim, Sin, and
Kim (2014) in the same context, with extensions to a goodness-of-fit test for the error density. Conditions on the stationarity
of the time-series are given in all these references.

The nonparametric setting is mainly addressed in the literature in the regression framework with independent and
identically distributed data. The first works of Ahmad (1992) and Cheng (2004) showed the difficulty of combining model
estimation and density estimation based on nonparametric residuals. The consistency was proved under the condition that
the estimation error of the nonlinear regression function has to be uniformly weakly consistent. Efromovich (2005) pointed
out that the nonparametric framework for error density estimation is ‘‘extremely complicated due to its indirect nature’’.
Hemade developments under the customary assumption that the regression function is differentiable and the error density
is twice differentiable. Györfi and Walk (2012) proved the strong L1-consistency of a recursive and a nonrecursive kernel
density estimate based on a regression estimate, without assuming an additive noise in the model.

In this paper, we consider the problem of estimating the probability density function of the driven noise in a functional
autoregressive model of order 1. More precisely, we assume that we observe a time series Xn ∈ Rd whose dynamics is
described by the following model, for all n ≥ 0,

Xn+1 = f (Xn) + εn+1. (1)

The function f of Rd in Rd is unknown and ε = (εn)n≥0 is a sequence of independent and identically distributed (i.i.d. for
short) random variables with zero mean, covariance matrix Γ and unknown probability density function p. The initial state
X0 is given and is independent of ε. The objective of this work is then to propose an estimator of p with good convergence
properties, even though f is unknown and the (εn) are not observable.

In a recent paper, Hilgert and Portier (2012) studied the asymptotic properties of a plug-in estimator, the usual kernel
density estimator built from the nonparametric residualsεn of model (1) defined byεn = Xn −fn−1(Xn−1), wherefn is
a nonparametric estimator of function f . They showed the strong consistency over Rd of the estimator of p and obtained
a multivariate central limit theorem (CLT for short). These convergence results involve the convergence towards 0 of the
quadratic mean of the prediction errors (f (Xn) −fn(Xn)), which requires the uniform strong consistency offn. Convergence
rates are slow, and specifying them requires the knowledge of the shape of the distribution tail of p, which is unknown. This
last requirement is restrictive and incompatible with the use of such a plug-in estimator for the construction of a goodness-
of-fit test for the noise density.

To overcome this problem, it is necessary to consider another estimator which does not involve the nonparametric
residuals (εn). In this paper,we introduce a kernel-based estimatorp that only requires the estimation of function f at a given
point x0, instead of requiring it along the whole trajectory X0, X1, . . . , Xn−1, as does the plug-in estimator. The advantage
of this approach is that the asymptotic properties ofp only depend on the pointwise convergence offn, which is easy to
establish and leads to satisfying rates of convergence, free of any assumption on the shape of p. To that aim, we introduce a
bidimensional kernel, which prevents from obtaining the usual convergence rate in


nh2d

n where hn denotes the bandwidth
of the kernel density estimator. Nevertheless, it is sufficient to derive a goodness-of-fit test for the density p.

Our paper is organized as follows. Model assumptions are specified in Section 2. In Section 3, we introduce the
nonparametric estimators. Section 4 is devoted to the asymptotic results: almost sure convergence and multivariate CLT
are given. A numerical evaluation is presented in Section 5 to highlight the contribution of the paper. Section 6 illustrates
the use of the multivariate CLT in a goodness-of-fit test for the density p. All technical proofs are postponed in appendices.
Appendix A is concerned with two technical lemmas and Appendix B with the proof of the main theorem of the paper.

2. Model assumptions and consequences

This section is devoted to the assumptions made on the model and their resulting properties. We give conditions under
which (Xn)n≥0 is asymptotically stationary and possesses an invariant distribution.

To ensure the stability of model (1) and the existence of an asymptotic invariant distribution, we set the following usual
assumptions (see for example Duflo, 1997).

Assumption A1. The function f is continuous and there are two positive constants rf < 1 and Cf such that for any x ∈ Rd,

∥f (x)∥ ≤ rf ∥x∥ + Cf . (2)

Assumption A2. The initial state X0 and ε = (εn)n≥0 have a finite moment of orderm > 2. The probability density function
p of ε is positive (p > 0).

The main consequence of Assumptions A1 and A2 is that the process X = (Xn)n≥0 is asymptotically stationary and
possesses an invariant distribution µ, which has a finite moment of order m and a probability density function denoted h,
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