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a b s t r a c t

A recently introduced seeded dimension reduction approach enables existing sufficient
dimension reduction methods to be used in regressions with n < p. The dimension
reduction is accomplished through successive projections of seedmatrices on a subspace to
contain the central subspace. In the article, we will develop a seeded dimension reduction
for multivariate regression, whose responses are multi-dimensional. For this we suggest
two conditions that the dimension reduction is attained without the loss of information
of the central subspace. Based on this, we construct possible candidate seed matrices.
Numerical studies and two data analyses are presented.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Sufficient dimension reduction (SDR) in the univariate regression of Y ∈ R1
|X ∈ Rp reduces the dimension of the original

predictors X through a lower-dimensional linear projection predictor without loss of information about the conditional
distribution of Y|X such that

YyX|αTX, (1)

where y stands for independence and q ≤ p.
Statement (1) is equivalently rephrased that the conditional distributions of Y |X and Y |αTX are the same, and hence

the dimension reduction of X through αTX is achieved without loss of information about Y |X. A subspace spanned by the
columns of such α is called a dimension reduction subspace, and SDR typically seeks for the intersection of all dimension
reduction subspaces, which is called the central subspace SY |X. The true dimension and an orthonormal basis matrix of SY |X
will be denoted as d and η ∈ Rp×d, respectively. And the dimension reduced predictor of ηTX is called sufficient predictors.

For the multivariate regression of Y ∈ Rr
|X ∈ Rp, the idea of SDR is the same as univariate regression, and the central

subspace is defined accordingly. To recover SY|X, two popular approaches of inverse regression and forward regression
are widely used. The inverse regression-based methods construct a subspace spanned by the conditional moments of the
inverse regression of X|Y. Methods of K -means inverse regression (Setodji & Cook, 2004) and K -means average variance
estimation (Yoo, Lee, & Wu, 2010) estimate SY|X through investigating E(X|Y) and cov(X|Y) respectively. In the inverse
regression approach, the range of Y into h clusters through the K -means clustering algorithm, called slicing, is the key-step
for methodological implementation.

For the lattermethod, Yoo and Cook (2007) developed amethod done by usual ordinary least squares (OLS) application in
the regression of Y|X such thatβ = 6−1cov(X, Y), where6 = cov(X). To recovermore information on SY|X through the OLS,
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Yoo (2008) proposed a method to utilize information from polynomial regression of (Y, Y2, . . . , Yk)|X through constructing
β(k) = 6−1cov{X, (Y, Y2, . . . , Yk)}, where Yk

= (Y k
1 , . . . , Y

k
r ).

In order that subspaces spanned by E(X|Y), cov(X|Y), β, andβ(k) are proper subsets of SY|X or equal to SY|X, the following
condition is required: E(X|ηTX) is linear in ηTX. This condition is call linearity condition, which is very common in the SDR
literature. Since the linearity condition is for that of the marginal distribution of X, it is much weaker than a modeling
condition usually imposed in Y|X. Elliptically contoured distributions ofX guarantee that the condition holds. If the linearity
condition does not hold, the predictors are often power-transformed for normality.

Although the idea of SDR and the introduced SDR methods for multivariate regression do not have limitation for large
p-small nmultivariate regression in theory, its practical implementation is not possible, because the inverse of X is needed
to be computed. Recently Cook, Li, and Chiaromonte (2007) introduced a seeded dimension reduction, which provide a
general paradigm to use existing SDRmethods in such cases. In the seeded dimension reduction, a seedmatrix is successively
projected to recover SY|X. We will discuss this dimension reduction method in detail in later sections.

The purpose of the article is to develop a seeded dimension reduction for multivariate regression, called multivariate
seeded dimension reduction. For this we assume that all information of the regression of Y|X is given in E(Y|X). Based on this,
we construct possible candidate seed matrices and withdraw certain conditions to guarantee that the seed matrices reduce
the dimension of X without loss of information on SY|X.

The article is organized as follows. Section 2 is devoted to explain seeded dimension reduction. We develop multivariate
seeded dimension reduction in Section 3. Numerical studies and twodata analyses are presented in Section 4.We summarize
our work in Section 5.

We will define the notations frequently used throughout the rest of the paper. For B ∈ Rq×p and a subspace S of Rp, BS
and S(B) represent the set of {Bx : x ∈ S} and a subspace spanned by the columns of B, respectively. For a symmetric and
positive definite matrix 6, a 6 inner-product in Rp is defined as ⟨a, b⟩6 = aT6b. An orthogonal projection operator onto
S(B) relative to ⟨a, b⟩6 will be defined as B(BT6B)ĎBT6, where Ď stands for the Moore–Penrose inverse.

2. Seeded dimension reduction

Popular SDR methods, including ones introduced in Section 1, typically require the inversion of 6. When n < p, the
inversion is not possible, and hence practical application is not plausible any more to such regressions. To overcome this
issue in SDR, Cook et al. (2007) proposed a paradigm of sufficient dimension reduction without matrix inversion. To do
this, a p × q seed matrix ν is needed to be defined for a regression of Y ∈ R1

|X ∈ Rp such that S(ν) ⊆ 6SY |X. One
important requirement for the seed matrix is that it should be constructed without inverting 6. To give some examples for
seed matrices, we assume the linearity condition that E(X|ηTX) is linear in ηTX. The linearity condition is common in the
SDR literature. If X has an elliptically contoured distribution, the condition is automatically satisfied. In the case that the
linearity condition does not hold, X can often be one-to-one transformed to satisfy this condition. Hereafter we will assume
that the linearity condition holds, unless stated otherwise. Under the linearity condition, popular choices for seed matrices
are as follows.

2.a When Y is a categorical predictor, E(X|Y = y) − E(X) ∈ 6SY |X for Y = 1, . . . , h.
2.b When Y is many-valued or continuous, the range of Y is divided into h partitions Js(Y ), s = 1, . . . , h so that Js(Y ) = 1,

if Y ∈ Js(Y ) and 0, otherwise. Then E{X|Js(Y ) = 1} − E(X) ∈ 6SY |X.
2.c cov(X, Y ) ∈ 6SY |X.
2.d cov{X,U(k)} ∈ 6SY |X, where U = {Y − E(Y )}/

√
var(Y ) and U(k) = (U,U2, . . . ,Uk), k = 1, 2, . . . .

For simplicity, we will assume that S(ν) = 6SY |X throughout the rest of paper.
For a known subspace MY |X of Rp such that SY |X ⊆ MY |X, it is obvious that 6−1S(ν) ⊆ MY |X. Let PMY |X(6) =

R(RT6R)−1RT6 be an orthogonal projection operator PMY |X(6) onto MY |X relative to ⟨a, b⟩6, where R is a p × q matrix such
that S(R) = MY |X. Since the projection of 6−1ν onto MY |X returns itself, the following equivalences are derived:

6−1ν = PMY |X(6)6
−1ν = R(RT6R)−1RT66−1ν = R(RT6R)−1RTν. (2)

Since 6−1S(ν) = SY |X, the columns of R(RT6R)−1RTν span SY |X by the last equivalence in (2). Here, one crucially notable
thing is that 6−1 is not required in R(RT6R)−1RTν. If RT6R is not invertible, (RT6R)Ď is used instead.

Then, naturally, the matrix R is needed to be constructed so that its column spans a subspace large enough to contain
SY |X but reasonably estimable from data. For this, iterative projections of ν onto 6 were proposed in Cook et al. (2007):

Ru ≡ (ν, 6ν, . . . , 6u−1ν), u = 1, 2, . . . , u∗. (3)

The sufficient dimension reduction through the successive projection of seed matrices is called seeded dimension reduction.
The letter u in (3) is called a termination index of projections. It is noted that S(Ru−1) ⊆ S(Ru) for any u ≥ 2. Since

S(Ru) forms a nondecreasing sequence, it is important to make a proper choice of the termination index u, small enough to
guarantee that S(Ru) = SY |X. Recently Yoo (2013) suggests bootstrap coefficients of variations to determine the termination
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