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a b s t r a c t

Conditionally autoregressive (CAR) models are often used to analyze a spatial process
observed over a lattice or a set of irregular regions. The neighborhoods within a CARmodel
are generally formed deterministically using the inter-distances or boundaries between
the regions. To accommodate directional and inherent anisotropy variation, a new class
of spatial models is proposed that adaptively determines neighbors based on a bivariate
kernel using the distances and angles between the centroid of the regions. The newly
proposed model generalizes the usual CAR model in a sense of accounting for adaptively
determined weights. Maximum likelihood estimators are derived and simulation studies
are presented for the sampling properties of the estimates on the new model, which is
compared to the CAR model. Finally the method is illustrated using a data set on the
elevated blood lead levels of children under the age of 72 months observed in Virginia in
the year of 2000.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Given a set of geographical regions, observations collected over regions nearer to each other tend to have similar
characteristics as compared to distant regions. In geoscience, this feature is known as Tobler’s first law (Miller, 2004). From
a statistical perspective, given a set of geographical regions, the autocorrelation between the observations collected from
nearer regions tends to be higher than those that are distant. Thus, this spatial process observed over a lattice or a set of
irregular regions is usually modeled using autoregressive models.

A real data set of estimating the rate per thousand of children under the age of 72 months with elevated blood lead
levels observed in Virginia in the year 2000, is an example of a data set observed over irregular regions from Schabenberger
and Gotway (2005). Details with various model fittings are discussed in Schabenberger and Gotway (2005), and we will
reanalyze this data set using our proposed models.

Let S be the study region of interest, which can be split into the well defined set of disjoint and exhaustive sub-areas
S1, . . . , Sn such that S = ∪

n
i=1 Si and Si ∩ Sj = ∅ for i ≠ j. Suppose Yi = Y (Si) denotes some form of aggregated response

collected over Si. We consider a generalized linear model for the aggregated responses

E[Y |Z] = g(Z) and
Z = µ + η, (1)

where Y = (Y1, . . . , Yn) = (Y (S1), . . . , Y (Sn)), Z = (Z1, . . . , Zn) = (Z(S1), . . . , Z(Sn)), µ = (µ1, . . . , µn) = (µ(S1),
. . . , µ(Sn)) and η = (η1, . . . , ηn) = (η(S1), . . . , η(Sn)). Here, g(·) is a suitable link function, µ represents a vector of
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large-scale variations (trends over geographical regions) and η denotes a vector of small-scale variations (spatial random
effects) with mean 0 and variance–covariance matrix 6.

The large scale variations on each sub-region Si, µi, are usually modeled as a function of some explanatory variables
(e.g., latitudes, longitudes and other areal level covariates) using a parametric or semiparametric regression model (see
van der Linde, Witzko, & Jockel, 1995). However, developing a suitable model for the spatial random effects ηi is a more
challenging issue because the ηis are spatially correlated and are modeled as a latent (random) variable. Also, for any model
specification, the positive definiteness condition of the covariance structure needs to be satisfied. Estimations of such spatial
covariances are usually based on choosing suitable parametric forms. Thismeans that the n×n covariancematrix6 = 6(ω)
is assumed to be a deterministic function of a finite dimensional parameterω. Thus, it should lead to a positive definitematrix
for any sample size n and for all allowable parameter values ω, where ω is estimated from data.

For example, several geostatistical models are available for point-reference observations assuming that the spatial
process is weakly stationary and isotropic (see Cressie, 1993). Several extensions to model nonstationary and anisotropic
processes have also been developed (see Fuentes, 2002, 2005; Fuentes & Smith, 2001; Higdon, 1998; Higdon, Swall, &
Kern, 1999; Hughes-Oliver, Heo, & Ghosh, 2008; Paciorek & Schervish, 2006). Once a valid model for µ and η is specified,
parameter estimates can be obtained using the maximum likelihood method, weighted least squares, or Bayesian methods
(see Schabenberger & Gotway, 2005). Once the point-referenced data are aggregated to the areal regions (Si’s), the process
representing the aggregated data is modeled using integrals of spatial continuous processes (Journel & Huijbregts, 1978). In
our paper, the focus is the estimation of the covariance parameter ω with a model chosen for 6.

There are two distinct approaches to develop models for spatial covariance based on areal data. A suitably aggregated
geostatistical model directly specifies a deterministic function of the elements of the6matrix. Alternatively the Conditional
Autoregressive (CAR) models specify a deterministic function of elements of the inverse of the covariance,6−1(ω). Over the
past decades, there have been several attempts to explore the possible connections between these approaches of spatial
modeling (see e.g. Griffith & Csillag, 1993; Hrafnkelsson & Cressie, 2003; Rue & Tjelmeland, 2002). Song, Fuentes, and Ghosh
(2008) proposed that these Gaussian geostatistical models can be approximately represented by Gaussian Markov Random
Fields (GMRFs) and vice versa by using spectral densities. However, so far most of the GMRFs that are available in literature
do not specifically take into account the anisotropic nature of areal data. Lindgren, Rue, and Lindström (2011) showed that,
using an approximate stochastic weak solution to linear stochastic partial differential equations, for some Gaussian fields
in the Matérn class, an explicit link for any triangulation of Rd, between Gaussian fields and Gaussian Markov Random
Fields, formulated as a basis function representation could be provided. Finite element methods have been used to give a
principled construction of Matérn-type Gaussian Models in a variety of spatial settings for a sparse inverse covariance or
precision matrix.

In practice, statistical practitioners are accustomed to the exploration of relationships among variables, modeling
these relationships with regression and classification models, testing hypotheses about regressors and treatment effects,
developing meaningful contrasts, and so forth (Schabenberger & Gotway, 2005). For these spatial linear models, we usually
assume the correlated relationship among sub-regions is a hidden structure and study how a particular region is influenced
by its ‘‘neighboring regions’’ (Cliff & Ord, 1981). Thus, generalized linear mixed models for the area aggregate data are
usually considered with the latent spatial process. In these models, the latent spatial process ηi’s can be treated as a random
effect, and to model it, conditionally autoregressive models (Besag, 1974, 1975; Cressie & Chan, 1989) and Simultaneously
Autoregressive (SAR) models (Ord, 1975) have been used widely.

To explain the latent spatial process using suitably formed neighbors, Gaussian CAR models have been used as random
effects within generalized mixed effects models (Breslow & Clayton, 1993). The Gaussian CAR process has the merit
that, under fairly general regularity conditions, (e.g., positivity conditions etc.) lower dimensional conditional Gaussian
distributions uniquely determine joint Gaussianity of the spatial CAR processes. Thus, maximum likelihood (ML) and
Bayesian estimates can be easily obtained. However, one of the major limitations of the CARmodel is that the neighbors are
formed using some form a distance metric, or based on adjacency, but the effect of the direction is completely ignored. To
explain different effects depending on direction, in recent years, there have been some attempts to use different CARmodels
for different parts of the region. For instance, Reich, Hodges, and Carlin (2007) presented a novel model for periodontal
disease and used separate CAR models for separate jaws. White and Ghosh (2008) used a stochastic parameter within the
CAR framework to determine effects of the neighbors. Also, Kyung and Ghosh (2010) proposed a Directional CAR model
which captures anisotropy by assuming different autocorrelation between the neighbors in different directions. Recently,
Lee and Mitchell (2013) proposed a newmethodology to capture localized spatial correlation by estimating the elements of
the neighborhood matrix (wkj) as 1 or 0 as long as areas share a common border, rather than assuming that they are fixed
as 1. Because the elements of the neighborhood matrix determine the partial correlations between the random effects in
areas, if wkj = 1 the random effects are smoothed over in the modeling process, whereas if wkj = 0 they are conditionally
independent. Generally, the weights assigned to neighbors might be a function of other features of the lattice sites. This
means that the weights of neighbors might be different from each other by various features. For example, the weights
can be decided by the distance between the centroids of the sub-regions, then the closer neighbors have more weights
to explain the small scale variation of sub-region i. Also, if the underlying spatial process is anisotropic, the magnitude of
autocorrelation between the neighbors might be different in different directions. Thus, we propose an ‘‘adaptive’’ method
for the spatial random effect ηi’s to obtain the neighboring regions using the centroids of Si’s and we call it a generalized
conditional autoregressive (GCAR) model.
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