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a b s t r a c t

This article is concerned with non-stationary time series which does not require the full
knowledge of the likelihood function. Consequently, a quasi-likelihood is employed for
estimating parameters instead of the maximum (exact) likelihood. For stationary cases,
Wefelmeyer (1996) and Hwang and Basawa (2011a,b), among others, discussed the issue
of asymptotic optimality of the quasi-likelihood within a restricted class of estimators. For
non-stationary cases, however, the asymptotic optimality property of the quasi-likelihood
has not yet been adequately addressed in the literature. This article presents the asymptotic
optimal property of the non-stationary quasi-likelihood within certain estimating
functions. We use a random norm instead of a constant norm to get limit distributions
of estimates. To illustrate main results, the non-stationary ARCHmodel, branchingMarkov
process, and non-stationary random-coefficient AR process are discussed.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

When the likelihood of the data from a stochastic process is known to us, the likelihood-based methods are readily
available for estimating parameters. A unified approach for asymptotic optimal inference based on the likelihood (from a
stationary process) is to use the general framework of local asymptotic normality (LAN). Refer to, among others, Hall and
Mathiason (1990) andWefelmeyer (1996) for an excellent review of the LAN. The LAN is extended to local asymptoticmixed
normality (LAMN) to suit non-stationary processes. Asymptotic optimality properties of the maximum (exact) likelihood
estimates under various criteria are well documented in the literature via the LAN and the LAMN for the stationary case
and non-stationary case, respectively. See, for instance, Basawa and Scott (1983), Hwang and Basawa (2011a) and Hwang,
Basawa, Choi, and Lee (2013) for the various asymptotic optimal properties of the maximum (exact) likelihood estimates
via the LAN and LAMN approaches.

In this article,we suppose that the likelihood function is unknown. For instance, in a time series, the error distributionmay
not be known and/or the time series is specified only through a first few conditional moments. A quasi-likelihood (QL, for
short) method in the context of estimating functions is suited to cases of unknown likelihood (cf. Heyde, 1997). Introducing
the Godambe information criterion, Godambe (1985) established finite sample optimality of the QL within a certain class
of estimating functions. To establish asymptotic optimality properties of the QL, one needs to impose constraints on the
class of estimators among which the quasi-likelihood performs ‘‘best’’. Readers refer to, e.g., Wefelmeyer (1996) and Hwang
and Basawa (2011b, 2014) for the stationary QL case. However, for the non-stationary QL case, the issue of asymptotic
optimality has not been adequately pursued in the literature. Our main goal is to establish certain asymptotic optimality of
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the non-stationary QL within a restricted class of estimating functions (see Section 2 for details). To illustrate main results,
the non-stationary ARCHmodel, branching Markov process and non-stationary random coefficient ARmodel are discussed.

2. Non-stationary quasi-likelihood: main results

We are concerned with the non-stationary stochastic process {Xt , t = 0, 1, 2, . . .} with the starting value X0 = x0. The
probability measure associated with {Xt} involves a (k×1) vector parameter θ which belongs to an open subsetΘ of Rk, the
k-dimensional Euclidean space. It is noted that θ denotes a parameter of interest, allowing nuisance parameter η in addition
to θ . Semiparametric cases can also be included by treating the error distribution as η. This will be illustrated via examples in
Section 3. Let {X1, X2, . . . , Xn} denote the sample. Suppose that the likelihood of the data is unknown and we are interested
in estimating θ based on the sample. We are then led to the theory of estimating functions instead of the likelihood-based
methods. Throughout the paper, the estimating function is shortened as EF. We regard quasi-likelihood (QL) as a member
of certain class of EFs within which the asymptotic optimality property of the QL can be derived. To proceed, one needs to
restrict the class of EFs under consideration in order to discuss the optimality of the non-stationary QL.

Godambe (1985) introduced a ‘‘linear’’ class G of EFs Gn(θ) : (k × 1) defined by

G =


Gn(θ) =

n
t=1

wt(θ)gt(θ)


(2.1)

where {gt(θ)} is a sequence of martingale differences with respect to Ft (here and in what follows, Ft denotes the σ -field
generated by Xt , Xt−1, . . . , X1 for each t ≥ 1). In (2.1), gt(θ) is a pre-specified martingale difference which is referred to
as an innovation at time t , that is, E(gt(θ)|Ft−1) = 0. And wt(θ) is an Ft−1 measurable weight vector of order (k × 1). The
class G is generated by varying the ‘‘coefficient’’ wt(θ) while the given innovation gt(θ) being fixed. We use the notation
Et−1 for denoting the conditional expectation given Ft−1, viz., Et−1(·) = E(·|Ft−1) so that Et−1gt(θ) = 0. It is assumed that
Et−1[g2

t (θ)] < ∞ and Et−1[∂gt(θ)/∂θ ] ≠ 0. As a special member of G, the quasi-likelihood (QL) G∗
n(θ) is defined by

G∗

n(θ) =

n
t=1

Et−1[∂gt(θ)/∂θ ](Et−1g2
t (θ))−1gt(θ). (2.2)

Although it would be more precise to use the term QL-EF for G∗
n(θ), we shall refer to G∗

n(θ) as QL for simplicity. In this
paper, the superscript ∗ is reserved for denoting terms related to the quasi-likelihood G∗

n(θ). Due to Godambe (1985), the
QL G∗

n(θ) enjoys maximum of the so-called Godambe’s information matrix among the class G of EFs Gn(θ). Refer also to,
e.g., Hwang and Basawa (2011b) and Thavaneswaran, Liang, and Frank (2012) for the expression of Godambe’s information
matrix. As is noted in, e.g., Hwang and Basawa (2011b), the optimality of QL G∗

n(θ) established by Godambe (1985) is for
the estimating function itself and does not lead to any finite or asymptotic optimality of the estimator derived from the QL
equation G∗

n(θ) = 0. Dealing with the estimators directly (rather than EFs themselves), let θ̂QL denote a consistent solution
of the QL equation G∗

n(θ) = 0. For stationary cases, Chandra and Taniguchi (2001), Hwang and Basawa (2011b, 2014) and
Wefelmeyer (1996) showed that the asymptotic variance of

√
n(θ̂QL − θ) achieves the ‘‘minimum’’ among all the estimators

derived from EFs in the class G, under appropriate conditions.
To complement the literature, this article covers non-stationary cases. To do this, we use a random norm for θ̂QL instead

of a constant norm
√
n. Consider Gn(θ) =

n
t=1 wt(θ)gt(θ) ∈ G for which the sum of conditional covariance matrices Vn(θ)

is defined by

Vn(θ) =

n
t=1

wt(θ)wT
t (θ)Et−1g2

t (θ) : (k × k) (2.3)

where the superscript T denotes ‘‘transpose’’. We shall regard two EFs in G as being identical if one is a constant multiple
of the other. It will be assumed that ∥Vn(θ)∥ → ∞ almost surely as the sample size n tends to infinity. Here, ∥ · ∥ is used
to denote the matrix (or vector) norm, e.g., ∥A∥

2
= trace(ATA). The half matrix of a symmetric positive definite matrix A

is denoted by A1/2 obtained from the spectral decomposition of A. The inverse of A1/2 is denoted by A−1/2. Denote by Ik the
identity matrix of order k. Fix θ ∈ Θ and define the random local neighborhood Nδ(θ) about θ .

Nδ(θ) = {θ̄; ∥V 1/2
n (θ)(θ̄ − θ)∥ < δ}, for some δ > 0 (2.4)

Note that Nδ(θ) reduces almost surely to θ as n → ∞. From now on, we confine ourselves to ‘‘Regular EFs’’ in the class G.

Definition. Any EF Gn(θ) ∈ G is called regular if it satisfies the following three conditions.
(C1) For each fixed θ ∈ Θ ,

sup ∥V−1/2
n (θ)[∂Gn(θ̄)/∂θ T

− ∂Gn(θ)/∂θ T
]V−1/2

n (θ)∥ = op(1)

where the ‘‘sup’’ is taken over θ̄ ∈ Nδ(θ) and op(1) stands for a term converging to zero in probability.
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