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a b s t r a c t

Identifying homogeneous subgroups of variables can be challenging in high dimensional
data analysis with highly correlated predictors. The generalized fused lasso has been
proposed to simultaneously select correlated variables and identify them as predictive
clusters (grouping property). In this article, we study properties of the generalized fused
lasso. First, we present a geometric interpretation of the generalized fused lasso alongwith
discussion of its persistency. Second, we analytically show its grouping property. Third, we
give comprehensive simulation studies to compare our version of the generalized fused
lasso with other existing methods and show that the proposed method outperforms other
variable selection methods in terms of prediction error and parsimony. We describe two
applications of our method in soil science and near infrared spectroscopy studies. These
examples having vastly different data types demonstrate the flexibility of themethodology
particularly for high-dimensional data.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Suppose that we observe (x1, y1), . . . , (xn, yn), where xi = (xi1, . . . , xip)T is a p-dimensional predictor and yi is the
response variable. We consider a standard linear model for each of n observations

yi =

p
j=1

βjxij + ϵi, for i = 1, . . . , n,

with E(ϵi) = 0 and Var(ϵi) = σ 2. We also assume that the predictors are standardized and the response variable is centered,
n

i=1

yi = 0,
n

i=1

xij = 0 and
n

i=1

x2ij = 1 for j = 1, . . . , p.

The dramatic increase in the amount of data collected inmany fields comes with a corresponding increase in the number
of predictors p available in data analyses. For simpler interpretation of the underlying processes generating the data, it is
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often desired to have a relatively parsimonious model. This in turn creates the challenge of identifying important predictors
out of the many that are available.

As a motivating example, we consider a study involving near infrared (NIR) spectroscopy data measurements of cookie
dough (Osborne, Fearn, Miller, & Douglas, 1984). Near infrared reflectance spectral measurements were made at 700
wavelengths from 1100 to 2498 nanometers (nm) in steps of 2 nm for each of 72 cookie doughsmadewith a standard recipe.
The study aims to predict dough chemical composition using the spectral characteristics of NIR reflectance wavelength
measurements. Here, the number of wavelengths p is much bigger than the sample size n.

One possible approach is to cluster predictors based on the correlation structure and to use averages of the predictors
in each cluster as new predictors. Park, Hastie, and Tibshirani (2007) use this approach for gene expression data analysis
and introduce the concept of a super gene. However, NIR spectroscopy data are well known to have measurement errors
which induce positive correlations among the wavelengths. Ideally, we would like to keep all relevant (possibly correlated)
wavelengths while achieving better predictive performance. The hierarchical clustering used in Park et al. (2007) for
grouping does not account for the correlation structure of the predictors.

While variable selection in regression is an increasingly important problem, it is also very challenging, particularly when
there is a large number of highly correlated predictors. Since the important contribution of the least absolute shrinkage and
selection operator (lasso) method by Tibshirani (1996), many other methods based on regularized or penalized regression
have been proposed for parsimonious model selection, particularly in high dimensions, e.g. elastic net, fused lasso, OSCAR
and generalized lasso (Bondell & Reich, 2008; Tibshirani, Saunders, Rosset, Zhu, & Knight, 2005; Tibshirani & Taylor, 2011;
Zou & Hastie, 2005). Briefly, these methods involve penalization to fit a model to data, resulting in shrinkage of the
estimators. Many methods have focused on addressing various possible shortcomings of the lasso method, for instance
when there is dependence or collinearity between predictors.

In the lasso, a bound is imposed on the sum of the absolute values of the coefficients:

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| ≤ t,

where y = (y1, . . . , yn) and xj = (x1j, . . . , xnj).
The lassomethod is a shrinkagemethod, like ridge regression (Hoerl & Kennard, 1970), with automatic variable selection.

Due to the nature of the L1 penalty term, the lasso shrinks each coefficient and selects variables simultaneously. However,
a major drawback of the lasso is that if there exists collinearity among a subset of the predictors, it usually only selects one
to represent the entire collinear group. Furthermore, the lasso cannot select more than n variables when p > n.

Penalized regression methods have also been proposed for grouped predictors (Bondell & Reich, 2008; She, 2010;
Tibshirani et al., 2005; Zou & Hastie, 2005). All these methods work by introducing a new penalty term in addition to the
L1 penalty term of the lasso to account for correlation structure. For example, based on the fact that ridge regression tends
to shrink the correlated predictors toward each other, the elastic net (Zou & Hastie, 2005) uses a linear combination of the
ridge and lasso penalties for grouppredictor selection; elastic net solves the following constrained least squares optimization
problem,

β = argmin
β

y −

p
j=1

βjxj


2

subject to α

p
j=1

|βj| + (1 − α)

p
j=1

β2
j ≤ t.

The second term forces highly correlated predictors to be averaged while the first term leads to a sparse solution of these
averaged predictors.

Bondell andReich (2008) proposeOSCAR (Octagonal Shrinkage andClusteringAlgorithm for Regression),which is defined
by

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| + c
p

j<k

max{|βj|, |βk|} ≤ t.

By using a pairwise L∞ norm as the second penalty term, OSCAR encourages equality of coefficients.
Unlike the elastic net and OSCAR, the fused lasso (Tibshirani et al., 2005) accounts for spatial correlation of predictors. A

key assumption in the fused lasso is that the predictors have a certain type of ordering. The fused lasso solves

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| ≤ t1 and
p

j=2

|βj − βj−1| ≤ t2.

The second constraint, called a fusion penalty, encourages sparsity in the differences of coefficients. The method can theo-
retically be extended to multivariate data, although with a corresponding increase in computational requirements.

She (2010) introduces the clustered lasso (classo), a generalization of the fused lasso. Without the ordering restriction on
predictors, the classo is defined by

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| ≤ t1 and
p

j<k

|βj − βk| ≤ t2.



Download	English	Version:

https://daneshyari.com/en/article/1144651

Download	Persian	Version:

https://daneshyari.com/article/1144651

Daneshyari.com

https://daneshyari.com/en/article/1144651
https://daneshyari.com/article/1144651
https://daneshyari.com/

