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a b s t r a c t

We consider a family of statistical models with positive unknown parameter (which in-
cludes somewell-knownmodels for censored exponential data) and some statistical mod-
els for samples from stationary Gaussian processes. We prove large deviation results for
posterior distributions and, in some cases, also for maximum likelihood estimators.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

The theory of large deviations gives an asymptotic computation of small probabilities on exponential scale. There is a
wide range of applications where this theory plays a crucial role in solving problems of interest in several fields. Some
applications have interest in statistics; here we recall the hypothesis testing problems studied in Sections 3.4 and 3.5 in
Dembo and Zeitouni (1998), and the problems connected with applications in risk theory studied in Ganesh and O’Connell
(1999, 2000) and Macci (2011).

In this paper we prove large deviation results for sequences of posterior distributions and, in some cases, also for maxi-
mum likelihood estimators. The results for posterior distributions follow the same lines of the ones in Ganesh and O’Connell
(1999, 2000) and in Paschalidis and Vassilaras (2001); see also Eichelsbacher and Ganesh (2002a,b) withmoderate deviation
results. More recent references are Macci and Petrella (2006, 2009, 2010), where several results concern parametric models
and finite mixtures of conjugate prior distributions (such a restriction allows to prove the results using the Gärtner Ellis
Theorem).

A part of the results in this paper concerns stationary Gaussian processes; throughout this paper we use the symbol
GAUSS(µ, Σ) for the distribution of a stationary Gaussian process with constant meanµ and invertible covariancematrices
Σ = (Σn).

A contribution of this paper is the generalization of some results inMacci and Petrella (2009, 2010)without the restriction
of finitemixtures of conjugate prior distributions; this has some analogies withwhat happens inMacci (2011) for the results
in Macci and Petrella (2006). More precisely we consider the statistical model GAUSS(µ, Σ) with unknown µ studied in
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Macci and Petrella (2010), and the statistical models with a quite general likelihood

Ln(θ) = exp

fn


log θ −

θθn


(θ ∈ (0, ∞)), (1)

where fn does not depend on θ (i.e. fn is a constant or depends only on data), andθn is the maximum likelihood estimator.
Actually the likelihood (1) allows to recover the statistical models for censored data in Macci and Petrella (2009) and the
statistical model GAUSS(µ, r−1Σ) with unknown r (which plays the role of θ ) in Macci and Petrella (2010). In this paper
we also present a result for the statistical model GAUSS(µ, r−1Σ) with unknown (µ, r), which was not considered in Macci
and Petrella (2010).

The outline of the paper is the following. We start with some preliminaries in Section 2. The results for the statistical
models with the likelihood (1) and for the statistical models for samples from stationary Gaussian processes are presented
in Sections 3 and 4, respectively; their proofs (except the one of Proposition 4.2, which is an immediate consequence of
Proposition 3.1) are presented in Section 6, after some concluding remarks in Section 5.

Finally we introduce some notation used throughout this paper. The family of all Borel subsets of a set S will be
denoted by B(S). The neighborhood of a point x0 (in some Rd) and radius ε > 0 will be denoted by Bε(x0); thus we have
Bε(x0) := [x0 − ε, x0 + ε] if d = 1. We use the symbol N[µ, σ 2

] for the univariate Normal distribution with mean µ and
variance σ 2 and the symbol G[α, β] for the Gamma distribution with continuous density gα,β(y) =

βα

0(α)
yα−1e−βy1(0,∞)(y)

(where 0(α) =


∞

0 yα−1e−ydy is the Gamma function).

2. Preliminaries

We start with some preliminaries on large deviations; see Dembo and Zeitouni (1998) as a reference on this topic. Let Ω

be a Hausdorff topological space with Borel σ -algebra B(Ω); a lower semi-continuous function I : Ω → [0, ∞] is called a
rate function. Then a sequence of probability measures {ξn : n ≥ 1} on (Ω, B(Ω)) satisfies the large deviation principle (LDP
for short) with rate function I and speed vn if vn → ∞ as n → ∞,

lim sup
n→∞

1
vn

log ξn(C) ≤ − inf
ω∈C

I(ω) for all closed sets C ⊂ Ω

and

lim inf
n→∞

1
vn

log ξn(G) ≥ − inf
ω∈G

I(ω) for all open sets G ⊂ Ω.

In Proposition 4.3 below we prove a weak large deviation principle, i.e. the weaker version of LDP where the upper bound
holds for all compact sets C only. The lower bound for the open sets is equivalent to the following condition:

lim inf
n→∞

1
vn

logξn(G) ≥ −I(ω)
for all ω ∈ Ω such that I(ω) < ∞ and
for all open sets G such that ω ∈ G.

The rate function I is said to be good if all its level sets {{ω ∈ Ω : I(ω) ≤ η} : η ≥ 0} are compact; throughout this paper
we always have good rate functions. We also say that a sequence {Yn : n ≥ 1} of Ω-valued random variables satisfies the
LDP if the sequence {ξn : n ≥ 1} defined by ξn(·) = P(Yn ∈ ·) satisfies the LDP; we refer to this definition when we consider
LDPs for maximum likelihood estimators (MLEs from now on).

Throughout this paper we refer to the following known large deviation results (see e.g. Dembo & Zeitouni, 1998): Cramér
Theorem (Section 2.2), Gärtner Ellis Theorem (Section 2.3), the contraction principle (Theorem 4.2.1).
On the LDPs for posterior distributions in this paper. In general we have a statistical model {Pφ : φ ∈ Φ} and the sequence of
posterior distributions {πn : n ≥ 1} on φ where, for each fixed n ≥ 1, πn depends on sampled data y1, . . . , ys(n), and s(n)
goes to infinity as n → ∞. Moreover we always assume that the sampled values of consistent estimators cn(y1, . . . , ys(n)),
say, converge to some value φ̃ in the support of prior distribution. Then, if we think to have random variables {Yn : n ≥ 1}
with distribution Pφ̃ , and if we plug in Y1, . . . , Ys(n) into the data y1, . . . , ys(n), φ̃ can be interpreted as the true value of the
parameter φ.
On the support of a probability measure.Here we refer to Parthasarathy (1967, Section 2.2). The support S(π0) of a probability
measure π0 is the smallest closed set having probability 1 with respect to π0; moreover S(π0) is the set of all the points θ
such that π0(U) > 0 for all open sets U containing θ . Throughout this paper π0 is always a prior distribution concentrated
on the parameter space; the parameter space is often an open set and we shall see that all the rate functions for posterior
distributions are equal to infinity outside the intersection between the support of the prior distribution and the parameter
space.

3. Statistical models with the likelihood (1)

In this section we consider a class of statistical models with likelihood (1) and we present the LDP for the sequence of
posterior distributions. This is a wide class of statistical models and some examples will be presented at the end of this
section.
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