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a b s t r a c t

Advances in IT technology have led to the feasibility of high frequency sampling for stock
price data in financial time series. A standard approach to obtaining a sampling cycle is
to calculate n by minimizing the mean squared error (MSE) which is not appropriate for a
nonlinear time seriesmixture and does not account for the number of parameters included
in a model and targeted statistical power. The objective of this article is to show two
methods for the calculation of optimal sampling frequency under the framework of a finite
mixture model. First we investigate how sampling frequency can be obtained through a
modified likelihood ratio test to obtain a designated statistical power. Second, we propose
a new method based upon the minimization of AICc with a penalty for the number of
parameters. Numerical studies show that it performs better than other methods.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

With the rapid growth in financialmarkets, price data have been sampled at extremely high frequencies over the past few
years. Since most researchers in financial markets generally use thousands of financial data for model estimation, sample
size has not typically been a great concern. However,microstructure noise effects have caused a severe bias in daily statistical
calculations (McAleer & Medeiros, 2008). The fundamental causes of microstructure noise include price discreteness, price
changes caused by price limits, non-synchronous trading, reporting errors, quote delays and bid–ask spread (de Pooter,
Martens, & van Dijk, 2008). The effect becomes huge when the sampling frequency (sample size for a stock in a given day)
is large, which motivates us to fit a more complex model rather than a simple one, requiring the utility of a finite mixture
model in the data. There is a vast literature on computing sampling frequency for high frequency sampling. In general, a
conventional sampling frequency calculation method is a high frequency sampling method with the objective of minimum
squared error (MSE) minimization (Bandi & Russell, 2006), but it has two major drawbacks. First, it cannot be applied for
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(nonlinear) financial time series which have often been based on a finite mixture model. A mixture distribution for a time
series is designed from the point in which stock return volatility is high at the open and close of trading and low in the
middle of the day. Moreover, an auto-correlated series should be sampled sparsely considering the correlation between
samples (Craig, 1984). Many researchers have studied a finite mixture model for time series auto-correlated data (Albert,
1991; Huerta, Jiang, & Tanner, 2003; Jin & Li, 2006; McQuarrie & Tsai, 1998). Second, it does not fully consider the number
of parameters involved in a model (Akaike, 1974). A few researchers have studied the alternative methods to MSE in the
literature. The aim of this paper is to present two methods for the calculation of optimal sampling frequency under the
framework of a finite mixture model.

In this sense, we showhowwe apply themodified likelihood ratio test based on a finitemixturemodel to obtain sampling
frequency first (Chen, Chen, & Kalbfleisch, 2001; Chen & Kalbfleisch, 2005), so that the model should obtain a targeted
statistical power unlike MSE. In fact, it tests the homogeneity in the finite mixture model (McLachlan & Peel, 2000) with a
great parametric kernel distribution family. Pros and cons of this algorithm should be considered in the light of target data
in determining an appropriate algorithm. It explains the reason for choosing such a model (Chen et al., 2001; Chen, Chen,
& Kalbfleish, 2004; Chen & Kalbfleisch, 2005; Qin & Smith, 2004) and the reason why the modification of a likelihood ratio
test for the mixture model is needed (McLachlan & Peel, 2000).

Second, we propose a new method based on the minimization of AICc (Akaike information criterion (AIC) with a
correction) involving a penalty for the number of parameters under the framework of a finite mixture model. AICc was
first proposed by Hurvich and Tsai (1989) who ground their high opinion of AICc on extensive simulation work with time
series. To penalize for the number of parameters is very crucial in model assessment. We avoid the fact that as the number
of parameters increases, model assessment criterion should be inflated.

We introduce a motivating example for our study in Korean stock market data in Section 2. In Section 3, we describe our
model with efficient prices and microstructure noises in detail. In Section 4, a modified likelihood ratio test (MLRT) for our
data is conducted and we discuss how to determine sample size for a designated statistical power. Section 5 shows how the
optimal sampling frequency for a mixture of generalized autoregressive conditional heteroskedasticity models is obtained
by taking AICc calculations into account (Bollerslev, 1986). In Section 6, we illustrate simulation studies in various settings
of parameters. We demonstrate Korean stock market data for illustration in Section 7.

2. Motivation of this study

Many researchers have developed the computation of sampling frequency for high frequency sampling in stock price
data in the literature. They usually advocated using MSE for this but ignored the following aspects arising from a financial
stock market. In Korea, the stock market shows the relationship between volatility and herd behavior which creates high
volatility and also increases trading volume. It leads to the transformation of the shape of the volatility pattern and the
market is also highly affected by new information. The effect on volatility is very strong in the morning.

Those effects on the stockmarketmake a totallyU-shaped volatility pattern. It has beenwidely documented that volatility
varies systematically over the trading day and that this pattern is highly correlated with the intraday variation of trading
volume and bid–ask spreads as properties of the financial market. Volatility exhibits a U-shaped pattern, in particular, high
at the open and close of trading and low in the middle of the day, which implies that data consist of a few of distinct models
with different variance as well as different means. In addition, there is a vast literature of time series data based on a finite
mixture model (Albert, 1991; Huerta et al., 2003; Jin & Li, 2006). These perspectives motivate us to apply a finite mixture
model for the time series to our data. Unfortunately, MSE does not account for this. For instance, Fig. 1 illustrates that the
stock price return of the Korean stock price index (KOSPI) was distributed over 5min intervals in a day between December 1,
2011 and February 29, 2012. In this data, morning volatility is bigger than afternoon volatility so that an appropriatemixture
of distributions for the stock market index should be applied.

Two or more volatility clusters can be mixed in Fig. 1. For this reason, two time series models, the ARMA and GARCH
models discussed in Tsay (2005) will be considered. On the other hand, when computing an appropriate sample size in
stock price data, the number of parameters involved in the model is not considered in most cases. So, we want to determine
sample size to account for this aspect by utilizing AICc criterion.

3. Model description

The basic setup for the stock price model is as follows.

p(t) = µ(t)+ σ(t)dW (t), t = 1, 2, . . . , n, (1)

where p(t) is a stock price at time t, µ(t) is a drift component, σ(t) is an instantaneous volatility (or standard deviation)
and W (t) is a standard Brownian motion. In addition, suppose also that σ(t) is orthogonal to W (t) such that there is no
leverage effect.

Stock price is assumed to be a sum of an efficient price and microstructure noises which are independent of each other.
Using similar notation in Zhang (2006), log(p(t)), t = 1, 2, . . . , n can be modeled below.

log(p(t)) = (log(p(t)))∗ + εt , where (log(p(t)))∗ is an efficient price and εt is a microstructure noise.
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