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a b s t r a c t

This paper considers robust variable selection in semiparametric modeling for longitudi-
nal data with an unspecified dependence structure. First, by basis spline approximation
and using a general formulation to treat mean, median, quantile and robust mean regres-
sions in one setting, we propose a weighted M-type regression estimator, which achieves
robustness against outliers in both the response and covariates directions, and can accom-
modate heterogeneity, and the asymptotic properties are also established. Furthermore, a
penalized weighted M-type estimator is proposed, which can do estimation and select rel-
evant nonparametric and parametric components simultaneously, and robustly. Without
any specification of error distribution and intra-subject dependence structure, the variable
selection method works beautifully, including consistency in variable selection and oracle
property in estimation. Simulation studies also confirm our method and theories.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and
parsimony. Suppose that we have n subjects, amongwhich the ith subject hasmi ≥ 1 repeatedmeasurements. Consider the
following partially linear varying coefficient (PLVC) model for longitudinal data:

yij = x⊤

ij α(tij) + z⊤

ij β + ϵij, i = 1, . . . , n, j = 1, . . . ,mi, (1.1)

where yij denotes the jth outcome of the ith subject, α(t) = (α1(t), . . . , αp(t))⊤ ∈ Rp for t ∈ [0, 1] is unknown but smooth
function vector, β = (β1, . . . , βq)

⊤
∈ Rq is the constant coefficient vector, whose true values are α0(t) and β0 respectively,

xij = (x1ij, . . . , x
p
ij)

⊤
∈ Rp and zij = (z1ij , . . . , z

q
ij)

⊤
∈ Rq are the design vectors. We assume that the observations, and

therefore ϵij, are dependentwithin the same subjects, but independent across subjects, and the form of the error distribution
and the intra-subject dependence structure are left unspecified. The aim of this work is to select significant variables in the
parametric and nonparametric components simultaneously and robustly.

Shrinkage-type variable selection methods have seen increasing applications, and numbers of works have been done
to extend this type methods to varying coefficient (VC) or the PLVC models. Li and Liang (2008) studied variable selection
for the PLVC models, where the parameter components are identified via the SCAD (Fan & Li, 2001) but the nonparametric
components are selected via a generalized likelihood test, instead of the shrinkage method. Wang, Li, and Huang (2008) and
Wang and Xia (2009) proposed two variable selection methods for the pure VC model through basis spline approximation
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and kernel smoothing, respectively. Zhao and Xue (2009) presented amethod via the SCADwhich can simultaneously select
parametric and nonparametric components in (1.1).

Methods in the aforementioned papers aremainly built on conditionalmean regression. However, their performance can
be adversely influenced by outliers in either the response or the covariate space. In this work, we first propose a weighted
M-type regression, which utilizes a weight function to downweight the effect of leverage points and uses a general M-type
loss function that treats mean, median, quantile and robust mean regressions in one setting. Thus the newmethod can keep
balance between robustness and efficiency, and accommodate heterogeneity by choosing appropriate M-type loss function.
Under mild conditions, the convergence rate of the estimator for α(t) is obtained and the estimator for the β is shown to be
asymptotically normally distributed. Furthermore, we propose a partial adaptive group L2 norm penalizedweightedM-type
regression estimator, which can do estimation and select relevant nonparametric and parametric components simultane-
ously and robustly. Theoretical results show, with proper choice of tuning parameters, variable selection is consistent, and
estimators enjoy the oracle property. Here the oracle property means that the estimators of the nonparametric compo-
nents achieve the optimal convergence rate, and the estimators of the parametric components have the same asymptotic
distribution as that obtained under the true model.

It is remarkable that combining the penalization with M-type regression is not trivial, especially in the semiparametric
models. Notice that the loss function used in M-type regression may not be differentiable at some points (e.g., quantile
regression loss); as a result, the general asymptotic results for penalized mean regression (e.g. Wang et al., 2008, Wang &
Xia, 2009, Zhao & Xue, 2009) do not apply directly. Furthermore, in our semiparametric setting, in order to establish the
asymptotic results, it involves three types of regularization parameters, i.e., the smoothing parameters (e.g., knot number),
tuning parameters for parametric part and tuning parameters for nonparametric part. Due to their interaction, what should
be the right convergence speed for the regularization parameters under this situation is much less well understood. On the
other hand, since quantile regression loss involves a non-differentiable loss function that can be considered as an asymmetric
L1 function, the computation is challenging when the partial adaptive group L2 norm penalty is used.

Recently, there aremuch development in variable selection in nonparametric and semiparametricmodels. Lin and Zhang
(2006) proposed the component selection and smoothing operator (COSSO)method for an additivemodel. Huang, Horowitz,
and Wei (2010) studied the LASSO (Tibshirani, 1996; Zou, 2006) for variable selection in the additive model. Wei, Huang,
and Li (2011) studied variable selection issue for a high-dimensional varying coefficient model. Ma and Du (2012) studied
variable selection in partial linear regression with diverging dimensions for right censored data. Zhang, Cheng, and Liu
(2011) proposed a method for determining the zero, linear and nonlinear components in partially linear models. Huang,
Wei, and Ma (2012) further proposed a novel semiparametric model pursuit method for identifying the covariates with
linear effects and those with nonlinear effects, and proved selection consistency. Huang, Breheny, and Ma (2012) gave an
excellent discussion of group selection. Furthermore, much research has been done based on theM-type regression. See, e.g.
He and Shi (1994) andHe, Zhu, and Fung (2002) forM-type regression estimation for partially linearmodels; Kim (2007) and
Wang, Zhu, and Zhou (2009) for quantile regression estimation and assessment. For variable selection, also there are much
development. Wu and Liu (2009) discussed variable selection for linear model by quantile regression; Hohsuk, Kwanghun,
and Ingrid (2012), Tang, Wang, and Zhu (2013), Tang, Wang, Zhu, and Song (2012) and Zhao, Zhang, Lv, and Liu (2012)
discussed variable selection issues by quantile regression for the pure VC model; Kai, Li, and Zou (2011) discussed variable
selection only for the parametric component in the PLVC model by quantile regression; Li, Peng, and Zhu (2011) propose a
nonconcave penalized M-estimation for the linear model and established the oracle property; Zhou, Jiang, and Qian (2013)
proposed a least absolute deviations (LAD) variable selection for linear models with randomly censored data through the
LASSO; Yao and Wang (2013) developed a robust sparse MAVE (Xia, Tong, Li, & Zhu, 2002) based on M-estimation.

The rest of this paper is organized as follows. In Section 2, we introduce our method and investigate its theoretical
properties. The implementation issues are discussed in Section 3. Numerical studies are reported in Section 4. All the
technical proofs are provided in the Appendix.

2. Methodology and asymptotic properties

2.1. The methodology

Letπ(t) =

B1(t), . . . , Bqn(t)

⊤ be a set ofB-spline basis functions of order h̄+1withKn internal knots and qn = Kn+h̄+1.
Then αl(t) can be approximated as

αl(t) ≈

qn
s=1

Bs(t)θl,s = π(t)⊤θl, (2.1)

where {θl =

θl,1, . . . , θl,qn

⊤
∈ Rqn}

p
l=1 are spline coefficient vectors. Then, model (1.1) can be approximated as

yij ≈

p
l=1

qn
s=1

xlijBs(tij)θl,s +

q
k=1

zkijβk + ϵij = 5⊤

ij 2 + z⊤

ij β + ϵij, (2.2)

where 5ij =

x1ijπ

⊤

ij , . . . , x
p
ijπ

⊤

ij

⊤
∈ Rpqn , 2 =


θ⊤

1 , . . . , θ⊤

p

⊤
∈ Rpqn and πij = π(tij).
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