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a b s t r a c t

In this study, we propose two types of sieve estimators, based on least squares (LS), for
probability distributions that are mixtures of a finite number of discrete atoms and a con-
tinuous distribution under the framework of measurement error models. This research is
motivated by the maximum likelihood (ML) sieve estimator developed in Lee et al. (2013).
We obtain two types of LS sieve estimators through minimizing the distance between the
empirical distribution/characteristic functions and the model distribution/characteristic
functions. The LS estimators outperform theML sieve estimator in several aspects: (1) they
need much less computational time; (2) they give smaller integrated mean squared error;
(3) the characteristic function based LS estimator is more robust against mis-specification
of the error distribution. We also use roughness penalization to improve the smoothness
of the resulting estimators and reduce the estimation variance. As an application of our
proposed LS estimators, we use the Framingham Heart Study data to investigate the dis-
tribution of genetic effects on body mass index. Finally asymptotic properties of the LS
estimators are investigated.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we considermeasurement errormodelswherewe observe only the error-contaminated variable Y = X+Z ,
where X is the unobservable random variable of interest, and Z is the measurement error with a known density fz that is
independent of X . We are interested in estimating the distribution of X , which is assumed to be a mixture of several point
masses and a continuous distribution. We are particularly interested in the case that the continuous part is supported on a
finite interval, and has non-smooth boundaries.

Distribution estimation in measurement error models has been widely studied, but most of the earlier studies focused
on estimating continuous density functions. Recently there are two studies (Lee, Shen, Burch, & Marron, 2010; van Es,
Gugushvili, & Spreij, 2008) which consider mixtures of one discrete atom and one continuous component in the context
of measurement error models, and independently propose the same estimator. The convergence rate of the estimator is
recently derived by Gugushvili, Van Es, and Spreij (2011).
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In terms of purely continuous distributions, there are two major types of deconvolution approaches. The first type uses
ideas of Fourier and inverse Fourier transformation along with nonparametric smoothing. For example, see Lee et al. (2010),
van Es et al. (2008) and references therein. The second type includes non-Fourier based deconvolution methods. In this
group, many studies first employ basis functions such as B-splines or wavelets to expand the target density (or distribution)
function, and then estimate the basis coefficients using various approaches. The studies include Johnstone, Kerkyacharian,
Picard, and Raimondo (2004), Staudenmayer, Ruppert, and Buonaccorsi (2008) and references therein. In addition, several
alternatives for deconvolution have been proposed, such as NPMLE, SIMEX, and TAYLEX, which are well reviewed in Carroll,
Ruppert, Stefanski, and Crainiceanu (2006), Wagner and Stadtmüller (2008), and Wang, Sun, and Fan (2009).

Compared with the other studies, Lee et al. (2013) covers more general cases of measurement error models that have
two features: (1) discrete and continuous mixtures and (2) non-smooth boundaries. First they approximate the distribution
of X using discretization, which gives a sieve of the distribution family. Then they estimate the distribution using maximum
likelihood (ML) within each sieve. Sieve type estimators have been proposed for deconvolution problems by Cordy and
Thomas (1997) where degenerate distributions are used to approximate the continuous mixture component. In the error-
free case, Ruppert, Nettleton, and Hwang (2007) proposed a sieve type density estimator for certain special distributions
with known boundaries.

However, the MLmethod of Lee et al. (2013) involves long computation time and is not robust against misspecified error
distribution. In this study, we propose alternative least squares (LS) sieve estimators based on the cumulative distribution
function and characteristic function, instead of maximum likelihood. Our simulation results clearly demonstrate the advan-
tages of the LS estimators. First, computational cost ismuch smallerwhen using the LSmethod. For example, it takes 113.32 s
for theMLmethodon a simulated data setwith sample size of 329,while it only takes 0.30 s using the cumulative distribution
function based LS estimator. Secondly, in Section 4.1 the LS estimators are seen to give smaller (integrated) mean squared
error. Furthermore, as seen in Section 4.2, the LS estimators are more robust when the error distribution is misspecified.

The remainder of the paper is organized as follows. Section 2 explicitly describes our model, and then proposes the two
LS-sieve estimators, along with their estimation algorithms. In Section 3, consistency of the proposed estimators is estab-
lished under appropriate regularity assumptions. Section 4 illustrates numerical performance of the various methods via
simulation studies, and compares the ML-sieve with the LS-sieve estimators. Section 5 contains an application to the Fram-
inghamHeart Study data. Ourmethods are used to identify the distribution of some important SNPs’ effects on bodymass in-
dex (BMI).We conclude the paper in Section 6with discussion of futurework. Technical proofs are provided in the Appendix.

2. The model and the estimators

2.1. The model

Suppose that we can only observe an error contaminated variable Y , instead of X whose distribution is a mixture of
several point masses plus a continuous distribution. That is,

Y = X + Z, (1)

where Z is a measurement error with known density fZ , and is independent of X . Our goal is to use a random sample
Y1, . . . , Yn to estimate fX , the generalized density of X , which is a mixture of discrete point masses al, l = 1, . . . , ν, and
a continuous random variable Xc with density fc , using weights π1, . . . , πν , and πν+1. Hence, the generalized density fX (x)
has the following form:

fX (x) =

ν
l=1

πlδal(x) + πν+1fc(x), (2)

where δal is the Dirac delta function at al. Here, the weights are probabilities in the sense that each πl is nonnegative,ν+1
l=1 πl = 1. We are particularly interested in the case where fc is supported on a finite interval [a, b]. This paper focuses

on scenarios where the values ν and a1, . . . , aν are known. In this setting, the estimation of fX is equivalent to the estimation
of both fc and π = (π1, . . . , πν+1)

T . However, limited empirical results suggest that our method can be extended to cases
where the locations of the point mass are unknown, which we will discuss in Section 6.

The first step is discretization of the continuous variable Xc . We approximate Xc by a discrete random variable X̃c taking
values on an equally spaced grid, with grid spacing h. The discrete variable X̃c takes on values xj : xj+1 −xj = h, j = 1, . . . , r ,
which cover the support of fc . In practice, we choose X̃c satisfying

X̃c = xj if and only if Xc ∈ [xj − 0.5h, xj + 0.5h).

The parameter h plays a role similar to the bin width in histogram estimation, and the same as the smoothing parameter in
kernel density estimation. Let θ = (θ1, . . . , θr)

T be the probability distribution of X̃c , i.e.

θj = P(X̃c = xj) for each j = 1, . . . , r,

where θj ≥ 0 and


θj = 1. Then each θj approximates the probability that Xc lies in the interval [xj − 0.5h, xj + 0.5h).
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