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a b s t r a c t

By using the techniques ofMalliavin calculus,we investigate the asymptotic behavior of the
weighted cross-variation of fractional Brownian sheet with the casewhenHurst parameter
H = (H1,H2) belongs to (0, 1/2) × (1/2, 1) or (1/2, 1) × (0, 1/2).

© 2015 Published by Elsevier B.V. on behalf of The Korean Statistical Society.

1. Introduction

Recently in several works, the asymptotic behavior on the weighted power variations of a fractional Brownian motion
(fBm) has been studied by using Malliavin calculus (see Nourdin, 2008, Nourdin & Nualart, 2010 and Nourdin, Nualart,
& Tudor, 2010). For the two-parameter processes, a central limit theorem has been obtained in Réveillac (2009a) for the
weighted quadratic variations of a standard Brownian sheet. Furthermore, Réveillac in Réveillac (2009b) proved a central
limit theorem for the finite-dimensional laws of the weighted quadratic variations of fractional Brownian sheet (fBs).

In this paper, we study the asymptotic behavior on the weighted cross-variation for fBs BH
= (BH

s,t , (s, t) ∈ [0, 1]2) with
Hurst parameters H = (H1,H2), 0 < H1,H2 < 1. More precisely, we will consider the sequence {Fn,m, n,m ≥ 1} given by
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The sequence {Fn,m} of the type given by (1) is to be necessary for the theory of stochastic calculus for two-parameter
processes such as standard Brownian sheet or fBs (see Cairoli &Walsh, 1975 andWong & Zakai, 1974 for standard Brownian
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sheet, and see Kim, Jeon, & Park, 2008 for fBs). The sequence Fn,m can be written as

Fn,m =
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In the proof of Itô’s formula for fBs with Hurst parameters H1,H2 > 1
2 in Tudor and Viens (2003) (or see Kim et al., 2008),

Tudor and Viens (2003) show that as n and m tend to infinity, the sequence {Fn,m} of the form (2) converges, in L2(Ω), to
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See Tudor and Viens (2003) for the precise definition of the various stochastic integrals appearing in (3).
Let a = (a1, a2) and b = (b1, b2) be two points in the rectangle R1 = [0, 1]2. The notation a ⊗ b denotes the point

(a1, b2), and aE1 b denotes the condition a1 ≤ b1 and a2 ≥ b2. By using the definition of stochastic integrals of various
types in Kim et al. (2008), we can show that the sequence {Fn,m} of the form (1) converges, in L2(Ω), to
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where the measure µH is given by dµH(a) = 2H1H2a
2H1−1
1 a2H2−1

2 da1da2, and the notation R1 E1 R1 denotes the region
{(a, b) ∈ R1 × R1 : aE1 b}.

In the case of fBm BH
= (BH , t ∈ [0, 1]) with Hurst parameter H ∈ (0, 1), if H < 1

2 , the quadratic variation of fBm
is infinite, but if H > 1

2 , the quadratic variation of fBm is zero. In this context, we have an interest in the asymptotic
behaviors for the normalized sequence of the form (1) in the case when (H1,H2) ∈ (0, 1/2) × (1/2, 1) and (H1,H2) ∈

(1/2, 1) × (0, 1/2).
The purpose of the present work is to prove the following result:
A: The function f belongs to C4(R) and sups,t∈[0,1] E[|f (i)(BH

s,t)|
p
] < ∞ for any p ∈ (0, ∞) and i = 0, . . . , 4.

Theorem 1. Let BH
= (BH

s,t , (s, t) ∈ [0, 1]2) be fBs with Hurst parameter H = (H1,H2). Then we have

(i) If f : R → R satisfies the assumption A and if (H1,H2) ∈ (0, 1/2) × (1/2, 1), then we have, as n → ∞,
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2 db1db2 and the integration with respect to BH

a is a path-wise Young integral.
(ii) If f : R → R satisfies the assumption A and if (H1,H2) ∈ (1/2, 1) × (0, 1/2), then we have, as n → ∞,
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By the direct extension of the case of the Hermite process Z , studied by Nourdin et al. in Nourdin et al. (2010), to the case of
ΦH given below, we prove the asymptotic behaviors of the sequence {Fn,m} in the case when (H1,H2) ∈ (1/2, 1)× (1/2, 1).
Also by using the direct extension of the case of fBm, studied by Nourdin et al. in Nourdin et al. (2010), to the case of fBs,
we study the asymptotic behaviors of the sequence {Fn,m} in the case when (H1,H2) ∈ (0, 1/2) × (0, 1/2). Hence, in the
case when (H1,H2) ∈ (0, 1/2) × (0, 1/2) or (H1,H2) ∈ (1/2, 1) × (1/2, 1), we just describe the results of the limits of the
sequence {Fn,m}.
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