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a b s t r a c t

Using the diagnostic results in the ridge regressionmodel, we propose an approximate ver-
sion of Cook’s distance in the lasso regression model since the analytic expression of the
lasso estimator is not available. Also, we express the proposed Cook’s distance in terms of
basic building blocks such as residuals and leverages. We verify that the proposed statistic
successfully detects potentially influential observations on estimators of regression coef-
ficients and on the model selection in the lasso regression model. An illustrative example
based on a real dataset is given.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Studies on regression diagnostics continued for more than 30 years since Cook (1977), and they focused on most of the
existing statistical models with few exceptions. Good references in the linear regression diagnostics are Cook andWeisberg
(1980), Belsley, Kuh, andWelsch (1980), and Chatterjee andHadi (1986) among others. Also, Cook andWang (1983), Hinkley
and Wang (1988), Tsai and Wu (1990), and Kim, Storer, and Jeong (1996) developed diagnostic methods in the Box–Cox
transformationmodel (Box & Cox, 1964).Walker and Birch (1990) derived influencemeasures in the ridge regression (Hoerl
& Kennard, 1970). In the spline smoothing model, Eubank (1985), Silverman (1986), and Kim (1996) suggested a version of
Cook’s distance. Kim, Lee, and Park (2001) defined Cook’s distance in the local polynomial regression, and Fung, Zhu, Wei,
and He (2002) and Kim, Park, and Kim (2002) studied influence diagnostics in the semiparametric model. Recently, Bae,
Hwang, and Kim (2008) developed diagnostic issues in the varying coefficient model.

In this paper, we study diagnostic issues in the lasso regression (Tibshirani, 1996). Most influence measures, suggested
so far in many statistical models, are concerned about detecting influential observations on estimators of regression coef-
ficients. In the lasso regression, the first interest is, of course, detecting influential observations on estimators of regression
coefficients, and the second interest is detecting influential observations on estimate of shrinkage parameter. Especially in
the lasso regression, one or few influential observations on estimates of regression coefficients can also be influential on
the estimator of shrinkage parameter, so that model selection results based on the lasso will be different due to one or few
observations. We use the deletion method to define a type of Cook’s distance in the lasso regression. Analytic expression
is not possible in the lasso regression. To overcome this difficulty in the lasso regression, we use the diagnostic result of
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ridge regression and adapt it to the lasso regression. This paper is organized as follows. In Section 2, relevant notations and
results in the linear and ridge regression diagnostics are introduced. An approximate version of Cook’s distance in the lasso
regression is derived in Section 3. Numerical studies on the proposed statistic are done, and an illustrative example based
on a real data is given in Section 4, and concluding remarks are given in Section 5.

2. Linear and ridge regression diagnostics

Consider the linear regression model y = Xβ+ ϵ, where y is an n-vector of responses, X is an n×p full columnmatrix of
known covariates, β is a p-vector of unknown coefficients, and ϵ is an n-vector of independent random variables with mean
zero and unknown variance σ 2. We use yi and xi to denote the ith row of y and X , respectively, and use the subscript (i) to
indicate the deletion of the ith observation. Thus, X(i) denotes the matrix X with the ith row deleted. After fitting the model

by the method of least squares, we have β̂
lse

= (X ′X)−1X ′y, and ŷ = Hy, where H = X(X ′X)−1X′ is the hat matrix. Let the
residual vector be e = y − ŷ and s2 = e′e/(n− p) be the unbiased estimator of σ 2. Let β̂

lse
(i) be the least squares estimator of

β calculated with the ith case deleted. Miller (1974) showed that

β̂
lse

− β̂
lse
(i) =

(X ′X)−1xiei
1 − hii

, (1)

where hij is the ij-th element of the hat matrix H , i.e., hij = x′

i(X
′X)−1xj. Cook’s distance of the ith observation is defined as

C lse
i =

1
p
(β̂

lse
− β̂

lse
(i))

′Cov(β̂
lse

)−1(β̂
lse

− β̂
lse
(i)).

Using the result of (1), it can be expressed as basic building blocks, i.e.,

C lse
i =

1
pσ 2

ei2hii

(1 − hii)2
. (2)

For the influence of k observations, let K = {i1, . . . , ik} be an index set of size k. Also, let XK be the k × p submatrix of X
corresponding to the rows of the cases in K , and let eK be the k-vector with k elements of e in K . Let β̂(K) be the estimate of
β based on n − k observations after deleting observations in a set K . Then, Cook’s distance for k observations is defined as

C lse
K =

1
p
(β̂

lse
− β̂

lse
(K))

′Cov(β̂
lse

)−1(β̂
lse

− β̂
lse
(K)).

If we let HK = XK (X ′X)−1X ′

K , then

β̂
lse

− β̂
lse
(K) = (X ′X)−1X ′

K (I − HK )−1eK ,

and, therefore,

C lse
K =

1
pσ 2

e′

K (I − HK )−1HK (I − HK )−1eK .

When σ 2 is unknown, it is often replaced by its unbiased estimator s2.
Ridge regressionwas first introduced by Hoerl and Kennard (1970) as away of dealingwithmulticollinearity in the linear

regression. The ridge estimate of β is given by

β̂
ridge
θ = (X ′X + θ I)−1X ′y,

where θ , called a ridge regression parameter, is a positive value to be estimated. To estimate θ , the GCV (generalized cross-
validation) criterion defined as

GCVθ =

n
i=1

(yi − ŷθ,i)
2

{1 − tr(Hθ )}2
,

is often used. Here

Hθ = X(X ′X + θ I)−1X ′

is, so-called, the ridge hat matrix and ŷθ,i = x′

iβ̂
ridge
θ is the ith fitted value. Cook’s distance of the ith observation in ridge

regression can be defined in the same form as in the linear regression model, i.e.,

C ridge
i =

1
p
(β̂

ridge
θ − β̂

ridge
θ(i) )′Cov(β̂

ridge
θ )

−1
(β̂

ridge
θ − β̂

ridge
θ(i) ),
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