ELSEVIER

Contents lists available at ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

Convergence rate of maximum likelihood estimator of parameter in stochastic partial differential equation*

Yoon Tae Kim, Hyun Suk Park*

Department of Statistics, Hallym University, Chuncheon, Gangwon-Do 200-702, South Korea

ARTICLE INFO

Article history: Received 11 July 2014 Accepted 8 January 2015 Available online 26 January 2015

AMS 2000 subject classifications: 60H07 60H30

Keywords:
Malliavin calculus
Stochastic partial differential equation
Maximum likelihood estimator
Cylindrical Brownian motion
Multiple stochastic integral

ABSTRACT

Using the recent results obtained by combining Malliavin calculus and Stein's method, we study the rate of convergence of the distribution of the maximum likelihood estimator of a parameter appearing in a stochastic partial differential equation. The aim of this paper is to develop the new techniques, allowing us to improve the rate, given by Mishra and Prakasa Rao (2004), to O(1/N).

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

We investigate asymptotic properties of the maximum likelihood estimators for parameter $\theta > 0$ occurring in parabolic SPDEs of the following form

$$du(t,x) = \theta \Delta u(t,x) + dW_0(t,x) \tag{1}$$

with the initial and boundary conditions given by

$$\begin{cases} u(0,x) = f(x), & 0 < x < 1, f \in L^2((0,1)) \\ u(t,0) = u(t,1) = 0, & 0 \le t \le T. \end{cases}$$
 (2)

Here $\Delta = \frac{\partial^2}{\partial x^2}$, and Q is a nuclear covariance operator for the Wiener process $W_Q(t,x)$ taking values in $L^2((0,1))$ so that $W_Q(t,x) = Q^{1/2}W(t,x)$, where W is a cylindrical Brownian motion in $L^2((0,1))$. It is a standard fact (see Rozovskii, 1990) that $W_Q(t,x)$ can be represented as

$$dW_{\mathbb{Q}}(t,x) = \sum_{i=1}^{\infty} \sqrt{q_i} e_i(x) W_i(t) \quad \text{a.s.,}$$

E-mail addresses: ytkim@hallym.ac.kr (Y.T. Kim), hspark@hallym.ac.kr (H.S. Park).

 $^{^{\}dot{lpha}}$ This research was supported by Hallym University Research Fund, 2014(HRF-201407-012).

^{*} Corresponding author.

where $W_i(t)$, $i=1,2,\ldots$ are independent one-dimensional Wiener processes and $\{e_i\}$, $i=1,2,\ldots$, is a complete orthonormal system (CONS) in $L^2((0,1))$ consisting of the eigenvectors of Q, and q_i are the corresponding eigenvalues of Q. In this paper, we consider the special covariance operator Q with CONS $e_i = \sin(i\pi x)$. Then $\{e_i\}$ is a CONS with the eigenvalues $q_i = (1-\lambda_i)^{-1}$, $i=1,2,\ldots$, for the operator Q, where $\lambda_i = (\pi i)^2$ and $Q = (I-\Delta)^{-1}$ (see Hübner, Khasminskii, & Rozovskii, 1993).

We define a solution u(t, x) of Eq. (1) with initial and boundary conditions (2) as a formal sum

$$u(t,x) = \sum_{i=1}^{\infty} u_i(t)e_i(x),$$

where the Fourier coefficients $u_i(t)$ satisfy the following stochastic differential equation:

$$\begin{cases} du_i(t) = -\theta \lambda_i u_i(t) dt + \frac{1}{\sqrt{1+\lambda_i}} dW_i(t), & t > 0, \\ u_i(0) = \nu_i, & \nu_i = \int_0^1 f(x) e_i(x) dx. \end{cases}$$
(3)

Let \mathbb{P}_{θ} be the probability measure generated by the process u on C([0,T]). It can be shown that \mathbb{P}_{θ} is singular with respect to \mathbb{P}_{θ_0} when $\theta \neq \theta_0$. Let u^N be the projection of u on C([0,T]) onto the subspace spanned by $\{e_1,\ldots,e_N\}$ in $L^2((0,1))$ and \mathbb{P}^N_{θ} be the probability measure corresponding to the process u^N . Then likelihood ratio for the projection u^N can be expressed as

$$\log \frac{d\mathbb{P}_{\theta}}{d\mathbb{P}_{\theta_0}}(u^N) = -\sum_{i=1}^N \lambda_i(\lambda_i + 1) \left\{ (\theta - \theta_0) \int_0^T u_i(t) (du_i(t) + \theta_0 \lambda_i u_i(t) dt) + \frac{1}{2} (\theta - \theta_0)^2 \lambda_i \int_0^T u_i^2(t) dt \right\}. \tag{4}$$

It is clear from (4) that the MLE $\hat{\theta}_N$ of θ based on u^N is given by

$$\hat{\theta}_{N} = -\frac{\sum_{i=1}^{N} \lambda_{i} \sqrt{\lambda_{i} + 1} \int_{0}^{T} u_{i}(t) du_{i}(t)}{\sum_{i=1}^{N} \lambda_{i}^{2} (\lambda_{i} + 1) \int_{0}^{T} u_{i}^{2}(t) dt}.$$
(5)

In the paper Mishra and Prakasa Rao (2004), the authors obtain a Berry–Esseen type bound for the MLE $\hat{\theta}_N$:

Theorem 1 (Mishra and Prakasa Rao). There exists a constant C depending on θ_0 , $||f||_{L^2((0,1))}^2$ and T such that for any $\gamma > 0$ and $N \ge N_0$, depending on θ_0 and T,

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}_{\theta_0} \left(\sqrt{\varphi_N(\theta_0)} (\hat{\theta}_N - \theta_0) \le z \right) - \mathbb{P}(Z \le z) \right| \le C N^{3+\gamma} \left(\frac{1 + \sqrt{T}}{T N^3 + \sum_{k=1}^N k^4 \nu_k^2} \right) + 3\sqrt{N^{-\gamma}}, \tag{6}$$

where the random variable Z has the normal distribution with the zero mean and unit variance, and the normalizing factor $\varphi_N(\theta)$ is

$$\varphi_N(\theta) = \frac{1}{2\theta} \sum_{i=1}^N \lambda_i (\lambda_i + 1) \left\{ \nu_i^2 (1 - e^{-2\theta \lambda_i T}) + \frac{T}{\lambda_i + 1} \right\}.$$

In Remark 4.4 in Mishra and Prakasa Rao (2004), the authors argue that the bound in Theorem 1 is of order $O(N^{\gamma-2}) + O(N^{-\gamma/2})$ provided $\sum_{k=1}^{N} k^4 v_k^2 \ge g(N) = O(N^5)$, and in such case, the upper bound can be obtained to be of order $O(N^{-2/3})$ by choosing $\gamma = 4/3$. However, if $\sum_{k=1}^{N} k^4 v_k^2 \le g(N) = O(N^3)$ (for example, f = 0 i.e. $v_k = 0$ for all k = 1, 2, ...), then the upper bound in (6) is given by

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}_{\theta_0} \left(\sqrt{\varphi_N(\theta_0)} (\hat{\theta}_N - \theta_0) \le z \right) - \mathbb{P}(Z \le z) \right| \le C N^{\gamma}. \tag{7}$$

In such case, from the upper bound (7) of the *Kolmogorov distance*, we cannot show that the normal approximation of the MLE $\hat{\theta}_N$ holds. Hence the sharp upper bound is needed to prove the normal approximation through the *Kolmogorov distance*. Let $\{F_N\}$ be a sequence of zero-mean real-valued random variables with the form of a functional of an infinite dimensional Gaussian fields. In the paper Nourdin and Peccati (2009b), the authors, by combining Malliavin calculus with Stein's method, obtain explicit bounds of the type

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}(F_N \le z) - \mathbb{P}(Z \le z) \right| \le \phi(N), \tag{8}$$

Download English Version:

https://daneshyari.com/en/article/1144717

Download Persian Version:

https://daneshyari.com/article/1144717

<u>Daneshyari.com</u>