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a b s t r a c t

In this paper we discuss semiparametric additive isotonic regression models. We discuss
the efficiency bound of the model and the least squares estimator under this model. We
show that the ordinary least square estimator studied by Huang (2002) and Cheng (2009)
for the semiparametric isotonic regression achieves the efficiency bound for the regular
estimator when the true parameter belongs to the interior of the parameter space. We also
show that the result by Cheng (2009) can be generalized to the case that the covariates are
dependent on each other.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper we discuss semiparametric additive isotonic regression models. We discuss the efficiency bound of the
model and the least squares estimator under this model. We find that the monotonicity of infinite dimensional nuisance
parameters is not helpful for estimating the linear partwhenwe consider regular estimators.We also show that the ordinary
least square estimator studied by Cheng (2009) and Huang (2002) for the semiparametric isotonic regression achieves the
efficiency bound for the regular estimator when the true parameter belongs to the interior of the parameter space. We also
show that the result by Cheng (2009) can be generalized to the case that the covariates are dependent on each other.

For multidimensional semiparametric regression, we often impose some restrictions on the regression function to avoid
the curse of dimension. Additively separable models are popular among those structured models since they inherit the
simple structure and easy interpretation from the linearmodel.Meanwhile, they allow flexiblemodeling for each component
function. The semiparametric additively separable regression function has the following structure:

E(Y |W) = f (X; θ) + m(Z) (1)

where WT
= (XT , ZT ) is the covariate vector with XT

∈ Rp and ZT
∈ Rd, and Y is the response. Here, f (·; θ) is a function

parameterized by the finite dimensional parameter θ and m is a smooth function.
Model (1) is the partial linear model if f (X; θ) = θ TX. Furthermore, if we impose the additive structure on m, i.e.,

m(Z) = m1(Z1) + · · · + md(Zd), it becomes the partial linear additive model. For the estimation under these models, we
refer to Bhattacharya and Zhao (1997), Schick (1993, 1996), Speckman (1988), and Yu, Mammen, and Park (2011) among
others. As an extension of model (1), some researchers considered a transformation of the conditional mean instead of the
conditional mean itself, that is g(E(Y |W)) = f (X; θ) + m(Z) for some function g . See, e.g., Hastie and Tibshirani (1990),
Severini and Staniswalis (1994), and Yu and Lee (2010) for details. For the efficiency and efficient estimation under these
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models, we also refer to Cheng, Zhou, and Huang (in press), Cuzick (1992), Severini and Wong (1992), Yu and Lee (2010),
and Yu et al. (2011).

In this paper we study the partial linear additive isotonic model, which is a subclass of model (1). We write the model as
follows:

Y = θ TX + m1(Z1) + · · · + md(Zd) + ϵ (2)

where mj, j = 1, . . . , d are smooth monotone functions and ϵ is an error independent with the covariate WT
= (XT , ZT ).

Note that model (2) includes the usual isotonic regression model, additive isotonic regression model and partial linear
isotonic regression model, for the case p = 0, d = 1, for the case p = 0 and d > 1, and for the case p ≥ 1 and d = 1,
respectively.

The isotonic regression is very useful for analyzing the monotone relationship between the input and the output, which
are very common in economics, biosciences, and engineering. The usual isotonic regression is nowa classical area in statistics
(see, e.g., Robertson, Wright, & Dykstra, 1988). The additive isotonic regression model was discussed by Bacchetti (1989),
De Boer, Besten, and Ter Braak (2002), and Morton-Jones, Diggle, Parker, Dickinson, and Binks (2000) from the applied
side. Mammen and Yu (2007) obtained the asymptotic distribution of the least square estimator under this model and also
showed that the least square problem can be solved by applying a cyclic pool adjacent violators algorithm. Huang (2002)
obtained the asymptotic distribution of the least square estimator under the partial linear isotonic regression model when
d = 1. He showed that the least square estimator θ̂ is

√
n-consistent and asymptotically normal and m1 can be estimated

asymptotically as if there does not exist the parametric part, θ TX. Cheng (2009) extended this result for the case d > 1
with the pairwise independent covariates in the nonparametric part. Cheng, Zhao, and Li (2012) also studied an empirical
likelihood method for the semiparametric additive isotonic regression to obtain a good confidence interval.

In this paper, we extend Cheng’s (2009) result to the general case of dependent covariate vector and show that the
least square estimator attains the efficient asymptotic variance under the Gaussian error model. The semiparametric Fisher
information bound for model (2) when d = 1 was first studied by Tripathi (2000). We also extend that result to the general
dimension in this paper.

2. Main result

In this section we discuss semiparametric efficiency for estimating the parameter θ under the partial linear additive
isotonic model (2) with a Gaussian error. Suppose we have a random sample of size n, (Y 1,W1), . . . , (Y n,Wn), which obeys
the semiparametric regression model (2). Here, we further assume that the errors ϵ i have the normal distribution with
mean zero and variance σ 2. Note that the additive function m(z1, . . . , zd) = m1(z1) + · · · + md(zd) is not identifiable up
to constants. We impose Emj(Zj) = 0 for the identification and we also assume w.l.o.g. that Em(Z1, . . . , Zd) = 0 for the
simplicity. We also assume that the covariate vectorWT

= (XT , ZT ) has a joint density qwith respect to ν = ν1 × ν2 where
ν1 is a σ -finite measure and ν2 is the Lebesgue measure on each support of X and Z. We only require that ν1 is a σ -finite
measure, which allows discrete random variables as well as continuous ones. Then, the random vector (Y ,WT )T has the
density:

p(y, x, z; θ,m, σ 2, q) = q(x, z)
1

√
2πσ 2

exp

−

(y − θ Tx − m1(z1) − · · · − md(zd))2

2σ 2


(3)

where mj’s are increasing functions. Note that, by the symmetry, increasing functions can be replaced by decreasing
functions with the reverse ordering in the covariate.

We will take a framework to Tripathi (2000) and van der Vaart (1989). Let C1(A) be the set of all continuously
differentiable functions defined on a set A ⊂ R. Define Fj = {f ∈ C1(Sj) : f ′(s) ≥ 0, Ef (Zj) = 0} where Sj is the
support of Zj. Then the sets Fj are closed convex cones in L2(qZj) where qZj is the density of Zj if Sj are compact intervals. Let
Fadd = F1+· · ·+Fd = {f (z) = f1(z1)+· · · , fd(zd); fj ∈ Fj for j = 1, . . . , d}. Then it is also clear thatFadd is a closed convex
cone in L2(qZ)where qZ is the density of the randomvector Z. The difficulty in calculating the Fisher information undermodel
(3) arises sinceFadd is not a linear space but a proper convex cone and thus it has the boundary.We need a special treatment
at the boundary of Fadd. Note that the boundary of Fadd is given as ∂(Fadd) = {f ∈ Fadd : f ′

j (xj) = 0 for at least a xj and a j}.
Under model (3), the estimation problem of (θ,m) is orthogonal to the parameter σ 2 and q, and thus we may regard σ 2

and q are known for the moment w.l.o.g. Then we have the log-likelihood of (θ,m), ln(θ,m; {(Y i,Wi)}i=1,...,n) so that

ln(θ,m; {(Y i,Wi)}i=1,...,n) ∝ −
1

2σ 2

n
i=1


Y i

− θ TXi
− m(Z i

1, . . . , Z
i
d)

2
(4)

≡

n
i=1

ℓ(θ,m; (Y i,Wi)) (5)

where θ ∈ Θ ⊂ R andm ∈ Fadd. For the simplicity, hereafter, we suppress the notation for data in ln and ℓ.
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