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a b s t r a c t

The envelope model recently developed for the classical multivariate linear regression
have potential gain in efficiency in estimating unknown parameters over usual maximum
likelihood estimation. In this paper, we theoretically investigate the envelope model as
dimension reduction for response variables and connect them to existing methods.

© 2012 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

When the interest is placed on changes of multi-dimensional responses in distribution as predictors vary, multivariate
linear regression should be one of the popular statistical tools.

The classical multivariate linear regression of Y ∈ Rr
|X ∈ Rp with r ≥ 2 is as follows:

Y|X = α + βX + ε, (1)

whereα ∈ Rr is an intercept vector,β ∈ Rr×p is an unknown coefficientmatrix, the error vector ε ∈ Rr
∼ MN(0, 6 ≥ 0)yX.

A notation ‘y’ indicates statistical independence, and MN stands for the multivariate normal distribution. In addition, it is
assumed that 6 > 0 throughout the rest of the paper.

When dimensions of Y and X are high, the maximum likelihood estimation (MLE) for the parameters, especially the
regression coefficientmatrixβ, may not be efficient. This is problematic, when prediction of responses for a new observation
of X is a main issue in the regression study.

As an alternative in such case, Cook, Li, and Chiaromonte (2010, CLC) proposed the envelope model under some
conditions, which force a connection between the conditional mean E(Y|X) and the conditional covariance, cov(Y|X) = 6.
By constructing the minimal reducing subspace of 6, which is fully informative to E(Y|X), dimensions of the parameter in
model (1) are reduced, and it leads more efficient MLE than the usual MLE. This model is called the envelope model. Another
interpretation of the envelope model is to partition the response subspace into the reducing subspace and its complement.
Since the former subspace is fully informative to E(Y|X), the projection of response variables onto the reducing subspace
can be thought as dimension reduction of responses.
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The main purpose of this paper is to provide a theoretical view of the envelope model for multivariate regression as
response dimension reduction. Since, under the envelope model, lower-dimensional linearly transformed responses given
X alone are informative to E(Y|X), the linear combination of Y can be considered as dimension-reduced responses. For this,
we theoretically investigate the envelopemodel in the context of response dimension reduction developed by Yoo and Cook
(2008, YC).

Response dimension reduction becomes important in various fields of study. Analysis of repeatedmeasures, longitudinal
data, functional data, curve or time series data is often difficult due to high dimensionality of Y, although the dimension of
X is relatively low. The study of such data would be facilitated if we could find a low dimensional linear transform of Y
that adequately describes the regression relationship. For example, Leurgans, Moyeed, and Silverman (1993) applied the
canonical correlation analysis to functional data in order to apply smoothing in a suitable way by reducing the dimensions.
More recently, Li, Aragon, Shedden, and Agnan (2003) have reduced the dimension of multivariate response to adequately
analyze China climate data. The data includes 12 dimensional responses.

The organization of the paper is as follows. Section 2 is devoted to reviewing both the envelope model for multivariate
linear regression and response dimension reduction in YC. Section 3 contains a new interpretation of the envelope model
as response dimension reduction in the context of YC. In Section 4, we summarize our work.

For notational conveniences, define 6U = cov(U) for a random vector U ∈ Ru, and S(B) stands for a subspace spanned
by the columns of B ∈ Rr×p. And, for a subspace S of Rr , S⊥ stands for its orthogonal complement. The original paper of the
envelope model by CLC can be acquired from http://www.stat.umn.edu/~dennis/RecentArticles/CLC.pdf.

2. Review: envelope model and response dimension reduction

2.1. Envelopes

Envelopes are subspaces and, especially, are originated from the concepts of invariant and reducing subspaces. So, first,
we start with an invariant subspace. A subspace S of Rr is an invariant subspace of M ∈ Rr×r , if MS ⊆ S. Moreover, if
MS⊥

⊆ S⊥, S is a reducing subspace ofM.
Now we define M-envelopes as follows. Let M ∈ Sr×r and let S ⊆ S(M), where S stands for symmetric matrices. The

M-envelope ofS, notationallyEM(S), is the intersection of all reducing subspaces ofM that containS. By the definition,EM(S)
is the minimal and unique reducing subspace among all possible ones. For more details regarding invariant and reducing
subspaces and EM(S), readers can refer Section 2 of CLC.

To develop an envelope model under (1), we consider M as 6, which is the conditional covariance of cov(Y|X) or the
covariance of the random error vector ε in (1). Also, as a choice of S, we consider B = S(β). Letting d = dim(B) and
u = dim{E6(B)}, it is assumed that 0 < d ≤ u ≤ r throughout the rest of the paper. By following the definition of
E6(B), 6 should be partitioned along with E6(B) and E⊥

6 (B) in the envelope model.

2.2. Envelope model for multivariate linear regression

For the classical multivariate linear regression in (1), we connect 6 and B through E6(B) by assuming the existence
of E6(B). It should be again noted that B ⊆ E6(B) and E6(B) reduces 6. We will denote that a r × u matrix 0 is a
semi-orthogonal basis matrix of E6(B) throughout the rest of the paper.

Then we can state that (1) β does not have full-column rank, if u < r; (2) if so, parts of β are fully informative to
regression; (3) 0, that is E6(B), can fully explain β, because β = 0ν; (4) it implies that the MLE of β can be obtained
through lower-dimensional matrix 0. Along with the statements above, the following results are easily derived under the
existence of E6(B) in (1).

R1. 6 = 61 + 62 with 6162 = 0 and E6(B) = S(61).
R2. Model (1) can be re-written as follows:

Y|X = α + 0νX + ε. (2)

R3. 61 = 0�0T and 62 = 00�00
T
0, where a r × (r − u) matrix 00 is the orthogonal complement of 0, � = 0T60, and

�0 = 0T
0600.

R4. 0TYy0T
0Y|X.

R5. 0T
0YyX and 0T

0YyX|0TY.

Results R1–R3 directly come from properties of envelopes. Result R4 can be proved by R3 under (1), and it rules out any
possibility that 0T

0X contributes to the regression. The relation of β = 0ν and R4 directly implies R5.
Now we consider model (2) as an alternative of (1), and the model in (2) is called the envelope model for multivariate

linear regression. To have insight about how efficient model (2) can be, we compare the total number of parameters for
both. In model (2), it should be r + pu + u(r − u) + u(u + 1)/2 + (r − u)(r − u + 1)/2 = r + pu + r(r + 1)/2, while
model (1) has r + pr + r(r + 1)/2 parameters. The difference between the two is p(r − u), and with high dimensional p and
relatively small u to r , the difference clearly gets bigger.
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