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a b s t r a c t

In this paper, a linear mixed effects model is used to fit skewed longitudinal data in
the presence of dropout. Two distributional assumptions are considered to produce
background for heavy tailed models. One is the linear mixed model with skew-normal
random effects and normal errors and the other one is the linear mixed model with skew-
normal errors and normal random effects. An ECM algorithm is developed to obtain the
parameter estimates. Also an empirical Bayes approach is used for estimating random
effects. A simulation study is implemented to investigate the performance of the presented
algorithm. Results of an application are also reported where standard errors of estimates
are calculated using the Bootstrap approach.

© 2012 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal studies represent one of the principal research strategies employed in medical and social research. The
defining feature of such studies is that subjects are measured repeatedly through time. The key point in longitudinal data
analysis is the important fact that correlations between responses of the same individual should be taken into account. A
pervasive problem that arises in the context of analysis of longitudinal data is the presence of missing data. In some cases,
a subject may be missing one of several measurement occasions; however, it is more likely that there are missing data due
to drop-out, which refers to a subject removing from the study, prior to the end of the study. Consequently, the data record
for this subject prematurely terminates.

Rubin (1976) provided a framework for the incomplete data by introducing the important taxonomy of missing data
mechanisms, consisting ofmissing completely at random (MCAR),missing at random (MAR) andmissing not at random (MNAR).
A mechanism is said MCAR, if missing values are independent of both unobserved and observed data, MAR if, conditional on
the observed data, the missing values are independent of the missing measurements and otherwise the missing process is
termed MNAR. In addition of the above definitions, Diggle and Kenward (1994) defined a dropout process to be completely
randomdropout (CRD) if dropout is not dependent on observed and unobserved responses; randomdropout (RD) if dropout,
given the observed responses, is independent of the missing responses; and otherwise as nonrandom dropout (NRD).

Linear mixed-effects models provide a class of models for the analysis of longitudinal data. The model takes the form

Yij = x′

ijβ + z ′

ijbi + εij, j : 1, 2, . . . , Ti, i : 1, 2, . . . ,m
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where Yij is the jth response of the ith individual, bi is a q × 1 vector of random effects, β is a p × 1 vector of fixed effects
parameter, εij are i.i.d. N(0, σ 2), xij is a p × 1 vector of covariates and zij is a q × 1 vector of covariates. The model can also
be expressed in matrix notation as follows:

Yi = Xiβ + Zibi + εi, (1)

where Yi = (Yi1, . . . , YiTi)
′, β (p × 1) is a vector of fixed effects associated with covariate matrix Xi, bi are q-dimensional,

mutually independent subject-specific random effects associated with covariate matrix Zi and εi ∼ NTi(0, σ
2I) are errors

independent of the bi.
In the current literature, the distribution of random effects is routinely assumed to be normal, however, in recent years

violation of such normality has been reported in many data analysis. For example, Pinheiro, Liu, and Wu (2001) pointed
out that the distribution of random effects appeared to have heavier tails than the normal in the orthodontic data analysis,
Zhang and Davidian (2001) found that the random intercept followed a positively skewed distribution in their model for
Framingham cholesterol data, and Ishwaran and Takahara (2002) indicated that the distribution of random effects deviated
from normality due to negative skewness and positive kurtosis in their analysis of chronic renal disease data.

In most of the clinical studies each individual measurement may be measured repeatedly over time, therefore for each
individual, data are collected at multiple time points. In these studies, properties of resources which create random effects
may be causes of skew random effects. For example, in mastitis data (which are described in Section 6) animal’s genetic
characteristics (which can be considered as random effects) may have a skew distribution, also random effects may arise
due to some omitted variables such as weight, age, etc. These may make random effects to have skew distribution. Another
example in longitudinal data can be found in HIV studies. In these studies, the response variable (in most of them CD4 count
measurement or viral load) tends to small quantities over time, that is, each component of it has left skewness.

During the last decade, there has been a growing interest in the construction of flexible parametric classes of distributions
exhibiting skewness which is the so-called skew-normal distribution.

The first version of the skew-normal distribution was given by Azzalini (1985, 1986). Multivariate skew-normal
distributions are used by Azzalini and Dalla-Valle (1996), Azzalini and Capitanio (1999) and Branco and Dey (2001). Also
some applications of univariate skew-normal distribution are given by Arellano-Valle, Ozan, Bolfarine, and Lachos (2005)
where one can find an application of skew-normal in measurement error models. Cancho, Lachos, and Ortega (2008) give
applications of this distribution for nonlinear regression models. Besides, one can find some application of multivariate
skew-normal distribution in Arellano-Valle, Bolfaine, and Lachos (2005), Lachos, Bolfarine, Arellano-Valle, and Montenegro
(2007), Lin and Lee (2008), and Sahu, Dey, and Branco (2003).

In this paper, we would like to use multivariate skew-normal distribution for analysis longitudinal data with random or
completely random dropout. The skew-normal distribution that we will use in this work is a slightly modified version of
the one proposed by Azzalini and Dalla-Valle (1996), which is a special case of the fundamental skew-normal distribution
proposed by Arellano-Valle and Genton (2005).We shall present an Expectation Conditional Maximization (ECM) algorithm
to find parameter estimates of the model.

Specifically, we say that a k-dimensional random vector Y has a multivariate skew-normal distribution with skewness
vector λ, location vector µ and scale matrix9, if its probability density function is given by

f (y) = 2φk(y|µ,9)Φ1(λ
′9−1/2(y − µ)) (2)

whereφk(.|µ,9) stands for the pdf of the k-variate normal distributionwithmean vectorµ and covariancematrix9 shown
as Nk(µ,9) andΦ1(.) is the univariate cumulative standard normal distribution function. The distribution given in (2) will
be denoted byY ∼ SNk(µ, 9, λ)which has the following stochastic representation (a form that helps one to easily generate
samples of this distribution):

Y d
= µ+ 91/2(δ|X0| + (Ik − δδ′)1/2X1), δ =

λ
√
1 + λ′λ

(3)

where X0 ∼ N(0, 1) and X1 ∼ Nk(0, Ik) are independent. For more details on this approach see Arellano-Valle and Genton
(2005), Arellano-Valle and Bolfaine et al. (2005) and Arellano-Valle and Ozan et al. (2005).

The EM algorithm is a general-purpose iterative algorithm to find maximum likelihood estimates in parametric models
for incomplete data, where an algorithm such as theNewton–Raphsonmethodmay turn out to bemore complicated.Within
each iteration of the EM algorithm, there are two steps, called the expectation step, or E-step, and the maximization step,
or M-step. The name EM algorithm was given by Dempster, Laird, and Rubin (1977), who provided a general and unified
formulation of the EM algorithm, its basic properties, and many examples and applications of it. The books by Little and
Rubin (2002), McLachlan and Krishnan (2008), and Schafer (1997) provide detailed descriptions and applications of the EM
algorithm.

The ECM algorithm as proposed byMeng and Rubin (1993), is a natural extension of the EM algorithm in situationswhere
themaximization process on theM-step is relatively simple when one conditions on some function of the parameters under
estimation. The ECM algorithm therefore replaces the M-step of the EM algorithm by a number of computationally simpler
conditionalmaximization (CM) steps. As a consequence, it typically convergesmore slowly than the EMalgorithm in terms of
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