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a b s t r a c t

Several adaptive allocation designs are available in the clinical trial literature for allocating
the entering patients among two competing treatments, having binary responses and
skewing the allocation in favor of the better treatment. No adaptive design is available
for continuous responses in the presence of prognostic factors, which is not model based.
In the present paper, a general allocation design is introduced which assumes no specific
regression model or distribution of responses. Some performance characteristics of the
design are studied. Some related inference, following the allocation, is also studied. The
proposed procedure is compared with some possible competitors. A real data set is used to
illustrate the applicability of the proposed design.

© 2009 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

A major objective of implementing response-adaptive allocation designs in sequential phase III clinical trials, involving
two competing treatments, is to allocate a larger number of patients to the better treatment in course of the trial. Most
of the available works in this direction are urn designs, for binary treatment responses (see Wei and Durham (1978), for
the randomized play-the-winner rule; Ivanova, Rosenberger, Durham, and Flournoy (2000), for the birth and death urn
design; Ivanova (2003), for the drop the loser rule). Some real life applications of such adaptive designs have been carried
out for binary treatment responses (see Bartlett et al. (1985), Biswas and Dewanji (2004) and Tamura, Faries, Andersen,
and Heiligenstein (1994)). Urn designs can be extended for ordinal categorical responses (see Bandyopadhyay and Biswas
(2000)), but not for count or continuous responses.
Atkinson (1982, 1999a,b) provided some biased coin-type designs for continuous responses to allocate in a 50:50 fashion.

Bandyopadhyay and Biswas (2001) provided some adaptive design for continuous responses to skew the allocation pattern
in favor of the better treatment. But that approach is totally model-based, assuming simple linear regression for the
covariates, and moreover it needs distributional assumption to implement and study the properties of the design. Atkinson
and Biswas (2005a,b) discussed some optimality based adaptive designs for continuous responses, where a linear model
assumption is needed for implementation. Biswas, H.H. Huang, and W.T. Huang (2006) discussed several logistics in the
response-adaptive designs for continuous responses.
In the present paper, the objective is to provide a suitable simple-minded adaptive design for continuous responses,

where no distributional assumption or regression assumption is needed to study or implement the design. The idea is to
provide amodel-free general adaptive allocation design with intuitive appeal, which is easy to implement, easy to interpret,
and applicable for all types of responses—categorical, count, continuous. Moreover, the design should be flexible enough to
incorporate other logistics like prognostic factors and delayed responses. The allocation design is introduced in Section 2,
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and the design is interpreted as an optimal design and also an urn design. Some properties of the design are discussed and
studied in Section 3. Choice of design parameters is discussed in Section 4. Section 5 describes results from some related
inference. Presence of prognostic factors in the design is briefly discussed in Section 6. Section 7 provides a comparison of
the proposed design with some possible competitors. Section 8 illustrates the applicability of the proposed design using
some real data set. Section 9 ends with some concluding discussions.

2. The allocation design

Suppose we have two competing treatments A and B under study and patients are to be sequentially allocated by the
adaptive allocation design. For the nth entering patient, we define an indicator variable of assignment, δn, which takes the
value 1 or 0 according to whether the nth patient is treated by treatment A or B. Let us denote the response by treatment A
by X , and the response of the treatment B by Y . Thus, the response of the nth patient, assumed to be instantaneous, possibly
in continuous scale, denoted by Un, is Un = δnXn+ (1−δn)Yn. Our objective is to use all the previous allocation and response
history for any allocation.
Assume that X ∼ F1(x) and Y ∼ F2(x), independently of each other, where F1 and F2 are arbitrary distribution functions

(d.f.’s). Let ‘c ’ be a point which will be called the allocation reference point (ARP), to be chosen by the experimenter, with
some prior idea about the response distribution. Let c = 0, without loss of generality.
The allocation design for the nth entering patient depends on a mixture random variable Vn having d.f. Gn(x|past data)

based on the past data, and allocate the nth entering patient to treatment A or B with probability {1 − Gn(0|past data)}
and Gn(0|past data). That means, we draw a random sample on Vn ∼ Gn and treat the nth patient by A or B according as
Vn > 0 or Vn ≤ 0. We start with an initial allocation distribution F0(x), possibly symmetric, such that F0(0) = 1/2. Thus,
G1(x) = F0(x). If the first patient is treated by treatment A and results in a response x1, we define G2 as a mixture of F0 and
J(x − x1) with mixing coefficients (1 − φ1) and φ1, respectively, where J(x) is a distribution, symmetric about ‘0’. On the
other hand, if the first patient is treated by treatment B and results in a response y1, G2 will be the mixture distribution of
F0(x) and J(x + y1) with mixing coefficients (1 − φ1) and φ1, respectively. Thus, if we defineWn = δnXn − (1 − δn)Yn, the
mixture distribution G2 is the mixture of F0(x) and J(x −W1) with mixing coefficients (1 − φ1) and φ1, respectively. For a
large response of the first patient, the allocation probability of the second patient to treatment A increases (decreases) if the
first patient is treated by treatment A (B). We then allocate the second entering patient to treatment A or Bwith probabilities
{1− G2(0|past data)} and G2(0|past data).
We define a sequence {φn, n ≥ 1} such that φn+1 ≥ φn for all n and φn → 1 as n → ∞. Now, for the allocation of

the (n + 1)st entering patient, using the past data of the first n patients, Gn+1 is the mixture distribution of F0 and the n
distributions J(x − W1), . . . , J(x − Wn), where the mixing coefficient of F0 is (1 − φn) and the mixing coefficient of any
J(x−Wi), 1 ≤ i ≤ n, is φn/n. Thus,

Gn+1(x|past data) = (1− φn)F0(x)+
φn

n

n∑
j=1

J(x−Wj). (2.1)

We allocate the (n + 1)st entering patient to treatment A or B with probabilities πn+1 = {1 − Gn+1(0|past data)} and
1 − πn+1 = Gn+1(0|past data), respectively. We call this design a general adaptive design (GAD). Note that this design can
be explained by an urn model to ease its interpretation. Also the design GAD can be interpreted as an optimal design which
minimizes {ΨAnA+ΨBnB subject to a prefixed (asymptotic) variance of the treatment difference θ , assuming equal variances
for F1 and F2, where nA and nB patients are treated by treatments A and B respectively, nA + nB = n, and

√
ΨA =

1− φn
2
+
1
n

n∑
j=1

φnJ(−Wj),
√
ΨB = −

1− φn
2
+
1
n

n∑
j=1

(
1− φnJ(−Wj)

)
.

3. Properties of the design

In this section, we mostly study the allocation probabilities and proportions of the proposed design GAD, both exact and
limiting. Let us denote pn = P(δn = 1), the unconditional probability of allocating the nth patient to treatment A. Suppose
Hn(x) is the marginal d.f. ofWn. Clearly,

Hn(x) = E [J(x−Wn)] = pn

∫
J(x− y)dF1(y)+ (1− pn)

∫
J(x+ y)dF2(y).

Then the unconditional allocation distribution function for the (n+ 1)st patient, denoted by G∗n+1(x), is given by

G∗n+1(x) = (1− φn)F0(x)+
φn

n

n∑
j=1

Hj(x).

Consequently, the unconditional allocation probability distribution for the (n + 1)st patient is {1 − G∗n+1(0)} and G
∗

n+1(0),
for treatments A and B, respectively.
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