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a b s t r a c t

The problem of estimating a large covariance matrix using a factor model is addressed
when both the sample size and the dimension of the covariance matrix tend to infinity.
We consider a general class of weighted estimators which includes (i) linear combinations
of the sample covariance matrix and the model-based estimator under the factor model,
and (ii) linear shrinkage estimators without factors as special cases. The optimal weights
in the class are derived, and plug-in weighted estimators are proposed, given that the
optimalweights depend on unknownparameters. Numerical results show that ourmethod
performs well. Finally, we provide an application to portfolio management.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The estimation of a large covariance matrix is a fundamental subject in economics, financial engineering, biology, signal
processing, and other fields. Accordingly, the problem has been widely studied. In the estimation of a p × p covariance
matrix, the classical large-sample theory assumes that p is fixed and the sample size N tends to infinity. In this setting, the
covariance matrix can be estimated from its sample version, which is a consistent estimator. However, in applications, we
often encounter large data sets that contain high-dimensional variables. In this case, using the sample covariance matrix is
inappropriate because it becomes singular when p is larger than N . Even if p < N , the sample covariance matrix is unstable
as noted by Fan et al. [9].

Various methods have been proposed to estimate the covariancematrix in high dimension. Ledoit andWolf [18], Schafer
and Strimmer [23], Chen et al. [6], Fisher and Sun [12], Touloumis [27], and others suggested well-conditioned estimators
that combine the sample covariance matrix and more stable statistics, which are called linear shrinkage or weighted
estimators. Many other well-conditioned estimators such as regularization and thresholding techniques and non-linear
shrinkagemethods have been studied by Bickel and Levina [1,2], Rothman et al. [22], Cai and Liu [3], Cai and Zhou [4], Ledoit
and Wolf [19], Ledoit and Wolf [20], Fan et al. [9], Fan et al. [10], Fan et al. [11], and others.
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When additional information on the covariancematrix is available, we can improve the sample covariancematrix. Factor
models use correlations between variables of interest and several covariates, called factors. Factor models have been used in
many applications, particularly, to explain stock returns in financial economics. Fama and French [8] found that excess asset
returns are well explained by three factors, namely sensitivity to market excess return, market capitalization and book-to-
price ratio. Ledoit andWolf [17], Ren and Shimotsu [21] and Fan et al. [9] considered shrinking the sample covariancematrix
toward the statistics constructed from the factor models. Ledoit and Wolf [17] and Ren and Shimotsu [21] suggested linear
shrinkage estimators but did not address high-dimensional settings. Fan et al. [9] proposed a covariance estimator based
on a strict factor model in high-dimensional settings. The strict factor model assumes independence among idiosyncratic
components; hence, the error covariance matrix becomes diagonal. However, cross-sectional independence is restrictive in
many applications, as noted by Chamberlain and Rothschild [5]. Recently, Fan et al. [10] applied a thresholding technique
and suggested an invertible covariance estimator based on an approximate factor model, which allows cross-sectional
correlations. Fan et al. [10] derived favorable convergence rates under sparsity of covariance of idiosyncratic components
when both p and N tend to infinity.

To describe the results in the present paper, let y and x be a variable of interest and a factor variable, respectively. The
variance and covariancematrices of y and x are denoted by6y,6x and6yx, and their sample variance and covariancematrices
are denoted by Sy, Sx and Syx. The problem is the estimation of the p × p matrix 6y, but the sample covariance matrix Sy is
ill-conditioned in high dimensions. When Sy is expressed as

Sy = Sy|x + SyxS−1
x Sxy for Sy|x = Sy − SyxS−1

x Sxy,

the linear shrinkage estimator given in the literature suggests shrinking the term Sy|x. In this paper, we consider shrinking
the term SyxS−1

x Sxy as well as Sy|x. Specifically, we suggest a double shrinkage estimator denoted by δα,β with weights α and
β . We obtain the optimal weights and derive approximations and estimators thereof, which lead to the proposed plug-in
double shrinkage estimator of 6y.

In evaluating the optimal weights α and β , their estimators and large-sample properties, we consider two cases:
(i) tr(62

y) = O(p2) and (ii) tr(62
y) = O(p). 6y is expressed as 6y = 6y|x + 6yx6

−1
x 6xy = 6y|x + B6xB⊤ for 6y|x =

6y − 6yx6
−1
x 6xy because the factor loading B corresponds to 6yx6

−1
x as seen in Section 2. For 6y|x, we allow cross-sectional

correlations among the idiosyncratic components and assume that tr(62
y|x) = O(p), which corresponds to the boundedness

of eigenvalues of6y|x given in [10]. Thus, case (i) holds if the factor loadings are dense, specifically, B⊤B = O(p). On the other
hand, when themaximal number of non-zero elements over the columns of the factor loadings B is uniformly boundedwith
respect to N and p, we have case (ii). Hence, when the factor loadings are dense, assumption (i) is reasonable, and when the
factor loadings are sparse or not dense, assumption (ii) is appropriate. In this paper, we treat the two cases, depending on
the density of the factor loadings.

Concerning the choice of loss function, we use the unnormalized loss tr(δ − 6y)
2 for the estimator δ of 6y while Fan

et al. [9], Fan et al. [10] mainly work with the normalized quadratic loss function tr(δ6−1
y − I)2. Fan et al. [11] noted that

the unnormalized loss functions of many estimators diverge even if the growth rate of p is moderate (pp. 614–615). Because
the unnormalized loss function is widely used, however, we treat it in this paper.

The remainder of this paper is organized as follows. In Section 2, we introduce the multivariate model and the factor
model; we then express the factor model in the framework of the multivariate model. The double shrinkage estimators
are introduced and the optimal weights are derived under appropriate assumptions for non-sparsity and sparsity of factor
loadings. The mean squared errors of the estimators with optimal weights are provided. In Section 3, we give several
estimators of the unknown parameters included in the optimal weights and suggest plug-in estimators by substituting the
estimators for the optimal weights. Section 4 reports numerical studies, and Section 5 presents an application to portfolio
management. Concluding remarks are given in Section 6, and technical proofs are provided in the Appendix.

2. Linear shrinkage estimators

2.1. Multivariate and factor models

Consider the following multivariate model: N random pairs (y1, x1), . . . , (yN , xN) are mutually independently and
identically distributed as E(yi) = µy, E(xi) = µx, E{(yi − µy)(yi − µy)

⊤
} = 6y, E{(xi − µx)(xi − µx)

⊤
} = 6x and

E{(yi − µy)(xi − µx)
⊤
} = 6yx = 6⊤

xy, where yi and xi are, respectively, p- and q-dimensional vectors, namelyyi
xi


∼ i.i.d.


µy
µx


,

6y 6yx
6xy 6x


. (2.1)

Let

Sy =
1
n

N
i=1

(yi − y)(yi − y)⊤, Sx =
1
n

N
i=1

(xi − x)(xi − x)⊤
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