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a b s t r a c t

We consider the asymptotic properties of Bayesian functional linear regression models
where the response is a scalar and the predictor is a random function. Functional linear
regression models have been routinely applied to many functional data analytic tasks in
practice, and recent developments have been made in theory and methods. However, few
works have investigated the frequentist convergence property of the posterior distribution
of the Bayesian functional linear regression model. In this paper, we attempt to conduct a
theoretical study to understand the posterior contraction rate in the Bayesian functional
linear regression. It is shown that an appropriately chosen prior leads to the minimax rate
in prediction risk.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the last few decades, there has been considerable interest and research work in Functional Data Analysis, since the
seminal work of Ramsay and Dalzell [35] introduced the statistical model and the tool for functional data, that is, a group of
data defined by functions. Currently, it is common to collect functional data whose measurements vary smoothly with an
underlying variable owing to advances in science and technology. Functional data analysis and its statistical inference have
been widely studied in terms of the underlying theory and the methods used and have been increasingly used for many real
applications (see, e.g., [36,37], and the references therein).

In particular, in the context of functional data analysis, we are often confronted with functional regression problems
where the predictor X is a random function defined on a compact interval, say [0, 1], and the response Y is a scalar random
variable. For example,X canbedaily temperature records at a location over a certain period to predict other climate variables,
or it can bemeasurements of brain signals at a region in the brain over an extended time to predict disease status. Numerous
applications and the recent developments in theory and methods for functional regression problems can also be found in,
for instance, [37,18,17,26].

As mentioned above, Frequentist approaches to functional regression are well documented in two monographs
[37,18] for both parametric and nonparametric analyses as mentioned before, and there is a sizable literature studying
the asymptotic properties of functional regression from the frequentist perspective. For example, Cardot et al. [7] is an early
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work using operator theory to study functional linear regression. Further, Cai and Hall [4] and Hall and Horowitz [25] give
a more complete theory for this class of models. For functional data measured sparsely with error, Yao et al. [52] considers
an estimator and its asymptotic properties, with a theory similar to classical nonparametric regression. Yuan and Cai [53]
and Cai and Yuan [6] study minimax rates of convergence in the framework of the functional linear model and reproducing
kernel Hilbert space.

On the other hand, the Bayesian counterparts of functional regression are comparatively rare although increasing,
and contributions include methodological developments such as wavelet-based models [33,32], spline models [15],
nonparametric Bayesian functional data analysis [40,34], and Gaussian process models [45,50]. However, all these works
mainly focus onmodeling and implementation aswell as real applications to functional data analysis. Thus, to the best of our
knowledge, there exist few theoretical results on posterior distribution for Bayesian functional regression. In particular, for
Bayesian nonparametric problems such as the functional regression models we consider in this paper, one important issue
that has attracted increasing attention over the past two decades is the frequentist validation of the Bayesian procedure.
That is, we need to investigate the asymptotic behaviors of posterior distributions, whether the posterior distribution
accumulates to the true value of the unknown parameter, and how fast the posterior distribution concentrates around the
true value of the unknown parameter, in which one takes the frequentist view that the true value of the parameter exists
(see e.g. [11,19] for nontechnical reviews).

It is known that even consistency of the posterior distribution may be illusive in nonparametric models with an
infinite-dimensional parameter space (e.g., [16,27]). Accordingly, much effort has been expended on developing posterior
consistency and to obtain posterior contraction rates in various Bayesian nonparametric models such as density estimation
problems (e.g., [20]) and regression problems for non i.i.d. observations [3,21,13,22,47].

Although there existmanyworks on posterior consistency and posterior convergence rates and,multiple general theories
on them have been proposed, it is increasingly important and fundamental to justify specific Bayesian methods. Further,
the general results do not cover all cases of interest (e.g., posterior contraction rates in Lr distance for 1 ≤ r ≤ ∞ need
somewhat different approaches (see, e.g., [23,9])) to tackle the problems arising from the existing general theory. Evenwhen
the general theory can be applied, verifying the sufficient conditions for posterior consistency and contraction rates is not
trivial, as this usually involves the complicated construction of appropriate tests,which varies across problems. Furthermore,
the general theory typically provides posterior contraction rates in terms of Hellinger distance, which is not necessarily
the natural metric implied by a specific problem. In particular, in the functional data structure, the current framework
with general posterior consistency and posterior convergence rates would not be straightforward to apply, and thus the
asymptotic investigation of posterior distribution in Bayesian functional data analysis problems has rarely been considered
in the literature.

In this paper, we initiate the study of posterior contraction rates for a simple case, which is the Bayesian functional
linear regression with a scalar response. That is, we have independent and identically distributed (i.i.d.) observations
(Xi, Yi), i = 1, . . . , n, satisfying

Yi = ⟨Xi, β⟩ + ϵi, (1)

where ⟨X, β⟩ =
 1
0 X(t)β(t)dt, ϵi ∼ N (0, σ 2), and X is a mean-zero square integrable stochastic process on [0, 1]. For

simplicity, we assume that σ 2 is known and put a Gaussian process prior on the unknown slope function β(·). However,
note that while our result can be extended to the general case with unknown σ , in which σ is assumed to be in an interval
[a, b] with 0 < a < b < ∞ and a prior on σ 2 is specified, this is beyond the scope of this paper. Thus, the only unknown
parameter is the slope function β , and we denote the true but unknown slope function as β0(·).

The goal of this paper is to study the asymptotic behavior of the posterior distribution of β(·) as the sample size
n increases. Specifically, under appropriate assumptions on the prior covariance operator, we show that the posterior
distribution of β(·) contracts at the minimax rate if the smoothness parameter is correctly specified in the prior, and that
some (non-optimal) rates in prediction risk can be obtained even if the smoothness of the prior is misspecified. Our results
are comparable to previous works such as Ghosal and van der Vaart [22] and Knapik et al. [29], where the prior is ‘‘correctly’’
specified, and in this first attempt, we do not pursue the case wherein the Bayesian procedure automatically adapts to the
smoothness of β0(·), but leave it for the future.

The rest of the paper is organized as follows. In Section 2, we introduce some background material on functional
regression, Gaussian process prior, and Bayesian contraction rates. In Section 3, the main results are presented and proved,
followed by several remarks. In Section 4, empirical analysis is presented to illustrate the effect of the prior on the sensitivity
of the posterior and the conditions for posterior convergence that we establish. We conclude the paper in Section 5 with a
discussion.

2. Preliminaries

In this section, we present a summary of some background materials that include some of the notations and concepts
used in the asymptotic analysis of this study. They are useful for discussing the main results in the next section and serve as
motivations for our adoption of prediction risk in the evaluation of the posterior concentration rates. To define prediction
risk,webeginwith two fundamental quantities in posterior consistency and concentration rates, that is, theKullback–Leibler
divergence and the Hellinger distance between two probability distributions.
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