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a b s t r a c t

We propose a new algorithm for envelope estimation, along with a new
√
n-consistent

method for computing starting values. The new algorithm, which does not require
optimization over a Grassmannian, is shown by simulation to be much faster and typically
more accurate than the best existing algorithm proposed by Cook and Zhang (2016).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The goal of envelope methods is to increase efficiency in multivariate parameter estimation and prediction by exploiting
variation in the data that is effectively immaterial to the goals of the analysis. Envelopes achieve efficiency gains by basing
estimation on the variation that is material to those goals, while simultaneously excluding that which is immaterial. It now
seems evident that immaterial variation is often present in multivariate analyses and that the estimative improvement
afforded by envelopes can be quite substantial when the immaterial variation is large, sometimes equivalent to taking
thousands of additional observations.

Algorithms for envelope estimation require optimization of a non-convex objective function over a Grassmannian, which
can be quite slow in all but small or modest sized problems, possibly taking hours or even days to complete an analysis
of a sizable problem. Local optima are another complication that may increase the difficulty of the computations and the
analysis generally. Until recently, envelope methods were available only in Matlab, as these computing issues hindered
implementation in R.

In this article we propose new easily computed
√
n-consistent starting values and a novel non-Grassmann algorithm

for optimization of the most common envelope objective function. These computing tools are much faster than current
algorithms in sizable problems and can be implemented straightforwardly in R. The new starting values have proven quite
effective and can be used as fast standalone estimators in exploratory analyses. An R package that implements the algorithm
was developed and is available at http://www.stat.ufl.edu/~zhihuasu/Renvlp.

In the remainder of this introduction we review envelopes and describe the computing issues in more detail. We let
P(·) denote a projection with Q(·) = I − P(·), let Rr×c be the set of all real r × c matrices, and let Sk×k be the set of all
real and symmetric k × k matrices. If M ∈ Rr×c , then span(M) ⊆ Rr is the subspace spanned by columns of M. vec is the
vectorization operator that stacks the columns of amatrix. A subspaceR ⊆ Rp is said to be a reducing subspace ofM ∈ Rp×p

if R decomposesM as M = PRMPR + QRMQR . If R is a reducing subspace ofM, we say that R reducesM.
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1.1. Review of envelopes

Envelopes were originally proposed and developed by Cook et al. [2,3] in the context of multivariate linear regression,

Yi = α+ βXi + εi, i = 1, . . . , n, (1)

where εi ∈ Rr is a normal error vector with mean 0, variance 6 > 0 and is independent of X,α ∈ Rr and β ∈ Rr×p is the
regression coefficient matrix in which we are primarily interested. Immaterial variation can occur in Y or X or both. Cook
et al. [3] operationalized the idea of immaterial variation in the response vector by asking if there are linear combinations
of Ywhose distribution is invariant to changes in X. Specifically, let PEY denote the projection onto a subspace E ⊆ Rr with
the properties (1) the distribution of QEY | X does not depend on the value of the non-stochastic predictor X and (2) PEY is
independent of QEY given X. These conditions imply that the distribution of QEY is not affected by Xmarginally or through
an association with PEY. Consequently, changes in the predictor affect the distribution of Y only via PEY and so we refer to
PEY informally as the material part of Y and to QEY as the immaterial part of Y.

Conditions (1) and (2) hold if and only if (a)B := span(β) ⊆ E (so E envelopesB) and (b) E reduces6. The6-envelope of
B, denoted E6(B), is defined formally as the intersection of all reducing subspaces of6 that containB. Let u = dim{E6(β)}
and let (0,00) ∈ Rr×r be an orthogonal matrix with 0 ∈ Rr×u and span(0) = E6(B). This leads directly to the envelope
version of model (1),

Yi = α+ 0ηXi + εi, with 6 = 0�0⊤
+ 00�00

⊤

0 , i = 1, . . . , n, (2)

where β = 0η, η ∈ Ru×p gives the coordinates of β relative to basis 0, and � ∈ Su×u and �0 ∈ S(r−u)×(r−u) are positive
definite matrices. While η,� and �0 depend on the basis 0 selected to represent E6(β), the parameters of interest β and
6 depend only on E6(β) and not on the basis. All parameters in (2) can be estimated by maximizing its likelihood with
the envelope dimension u determined by using standard methods like likelihood ratio testing, information criteria, cross-
validation or a hold-out sample, as described by Cook et al. [3]. The envelope estimatorβ of β is just the projection of the
ordinary least squares estimator B of β onto the estimated envelope,β = PEB, and √

n{ vec(β) − vec(β)} is asymptotically
normal with mean 0 and covariance matrix given by Cook et al. [3], where u is assumed to be known. An introductory
example of response envelopes is available in Cook and Zhang [5].

Similar reasoning leads to partial envelopes for use when only selected columns of β are of interest (Su and Cook [10]),
to predictor envelopes allowing for immaterial variation in X (Cook et al. [1]), to predictor-response envelopes allowing
simultaneously for immaterial variation in X and Y (Cook and Zhang [6]) and to heteroscedastic envelopes for comparing
the means of multivariate populations with unequal covariance matrices (Su and Cook [11]).

Cook and Zhang [5] extended envelopes beyond multivariate linear models by proposing the following estimative
construct for vector-valued parameters. Letθ denote an estimator of a parameter vector θ ∈ 2 ⊆ Rm based on a sample
of size n and assume, as is often the case, that

√
n(θ − θ) converges in distribution to a normal random vector with mean

0 and covariance matrix V(θ) > 0 as n → ∞. To accommodate the presence of nuisance parameters, decompose θ as
θ = (ψ⊤,φ⊤)⊤, where φ ∈ Rp, p ≤ m, is the parameter vector of interest and ψ ∈ Rm−p is the nuisance parameter
vector. The asymptotic covariance matrix of φ is represented as Vφφ(θ), which is the p × p lower right block of V(θ).
Then Cook and Zhang [5] defined the envelope for improvingφ as the smallest reducing subspace of Vφφ(θ) that contains
span(φ), EVφφ(θ){span(φ)} ⊆ Rp. This definition links the envelope to a particular pre-specified method of estimation
through the covariance matrix Vφφ(θ), while normal-theory maximum likelihood is the only method of estimation allowed
by the previous approaches. The goal of an envelope is to improve that pre-specified estimator, perhaps a maximum
likelihood, least squares or robust estimator. Second, the matrix to be reduced – here Vφφ(θ) – is dictated by the method
of estimation. Third, the matrix to be reduced can now depend on the parameter being estimated, in addition to perhaps
other parameters. Cook and Zhang [5] sketched application details for generalized linear models, weighted least squares,
Cox regression and described an extension to matrix-valued parameters.

1.2. Computational issues

The approaches reviewed in the last section all require estimation of an envelope, now represented generically as EM(U),
the smallest reducing subspace of M ∈ Sr×r that contains U ⊆ Rr , where M > 0. Let u = dim{EM(U)}, let 0 ∈ Rr×u be
a semi-orthogonal basis matrix for EM(U), let (0,00) be an orthogonal matrix, let M be a

√
n-consistent estimator of M,

and letU be a positive semi-definite
√
n-consistent estimator of a basis matrix U for U. With u specified, the most common

objective function used for envelope estimation is

Lu(G) = ln |G⊤MG| + ln |G⊤(M +U)−1G|, (3)

and the envelope is estimated as EM(U) = span{argmin Lu(G)}, where the minimum is taken over all semi-orthogonal
matrices G ∈ Rr×u. Objective function (3) corresponds to maximum likelihood estimation under normality for many
envelopes, including those associated with (1). Otherwise it provides a

√
n-consistent estimator of the projection onto

EM(U) provided M andU are
√
n-consistent (Cook and Zhang [7], who also provided additional background on Lu(G)).
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