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a b s t r a c t

A classification procedure for a two-class problem is introduced and analyzed, where the
classes of probability density functionswithin a regular exponential family are represented
by left-sided Kullback–Leibler balls of natural parameter vectors. If the class membership
is known for a finite number of densities, only, classes are defined by constructingminimal
enclosing left-sided Kullback–Leibler balls, which are seen to uniquely exist. A connection
to Chernoff information between distributions is pointed out.
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1. Introduction

The research area of classification and discrimination has gained major attention since R.A. Fisher has published his
ground-breaking work on the classification of species of iris (see [20]). Several well-known books on multivariate analysis
such as Rencher [40] and Anderson [4] provide overviews of classical classification approaches, and several monographs
have been published focusing on this topic (e.g. [31,22,34]). A variety of articles can be found when the underlying class
conditional distribution is multivariate normal or multinomial (see, e.g., [17,34]). For other distributions the amount of
literature is significantly smaller. Taniguchi [44] analyzes the discriminant function in exponential families of distributions.
Classification based on distance measures and each class consisting of a family of underlying distributions has been
considered by Kullback [29], p. 85, Matusita [32] and Menéndez et al. [35].

In the present paper, a classification approach for exponential families is suggested. The use of a divergencemeasure in a
classificationmethodwithin some exponential familywas proposed by Kullback [29]. Cacoullos [12] studied classification of
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observations to known normal populations bymeans of theMahalanobis distance.Matusita [33] proposed the application of
distance functions or affinities to classify a set of given observations with respect to two predefined distributions. Cacoullos
and Koutras [13] extended Matusita’s approach to spherical distributions, and Koutras [28] considered discrimination rules
for elliptical normalmixtures bymeans of a transformedMatusita affinity. Cacoullos andKoutras [14] investigatedminimum
distance classification viaMahalanobis distancewhen the underlying distribution departs frommultivariate normality; they
examine Kotz-type elliptical distributions. Menéndez et al. [35] studied classes consisting of a finite number of distributions
with unknownparameters,which are replaced by their respectivemaximum likelihood estimators; they aimed at classifying
another distribution to the class having smallest distance, which is measured by an f -dissimilarity as introduced by Györfi
and Nemetz [21]. For other fields of statistical inference with divergence measures, we refer to Pardo [39]. Taniguchi [44]
considered classifying a multivariate observation into one of two populations being members of an exponential family; log
likelihood ratio classification statistics were used with plug-in estimates.

We consider two-class classificationwhere each class within an exponential family has an underlying set of distributions
which forms a left-sided Kullback–Leibler ball (KL ball). Classification is then performed by measuring the distances of the
object to be classified to the two KL balls of distributions by means of the Kullback–Leibler divergence. If in the actual KL
ball some representatives are known, only, then minimum enclosing (lower-dimensional) KL balls in exponential families
are considered. Several results for those minimal enclosing balls are provided and an interesting one-to-one connection
between those balls and a generalized version of the Chernoff information is proven. In a simulation study, the proposed
procedure is analyzed by means of misclassification probabilities. More details on classification in exponential families can
be found in [27].

2. Exponential families and divergence measures

We consider an r-parametric exponential family P = {Pα : α ∈ Θ}, Θ ⊆ Rr , of distributions, where all member
distributions have a probability density function (pdf) of the form

fα(x) = f (x; α) = exp

α⊤T (x) − κ(α)


h(x)1X(x),

with respect to a σ -finite measure ν. Herein, X ⊆ Rp is the support of P, α = (α1, . . . , αr)
⊤ is called the natural parameter,

T (x) = (T1(x), . . . , Tr(x))⊤ is called the natural statistic and κ(α) and h(x) are real valued functions. Furthermore, h(x) and
the indicator function 1X are measurable and independent of α. κ is sometimes referred to as the cumulant function or the
log-partition function.

In the present paper it is assumed that the exponential family under consideration has a minimal representation in the
sense that the statistics T1, . . . , Tr are P-affine independent, i.e., for c ∈ Rr and c0 ∈ R the implication

c⊤T (x) = c0 P-a.e. =⇒ c = 0, c0 = 0
holds true. Furthermore, the natural parameter spaceΘ is supposed to be open. In the following, a family fulfilling those two
conditions is called regular exponential family. In regular exponential families κ is a strictly convex function onΘ, π := ∇κ is
bijective fromΘ toπ(Θ),∇2κ(α) is positive definite for eachα ∈ Θ , and the parameters are identifiable for the distributions
(see, e.g., [9]). For convenience, e.g., when applying maximum likelihood estimation and dealing with conjugate functions
and for its use in Section 7, we will restrict ourselves to regular exponential families.

As examples, we consider multivariate normal distributions with a known covariance matrix, as well as sequential order
statistics, which extend the model of common order statistics to a general, parametrized class of models of ordered random
variables. For these parameters,maximum likelihood estimators based on independent samples can be explicitly stated (see,
e.g., [26,16,8,45]).

Examples 1. (i) For a positive definitematrix6 ∈ Rr×r , the family of r-dimensional normal distributionsP(N )
:= {PNr (α,6)

: α ∈ Rr
} forms a regular r-parametric exponential family where the natural parameter is α, Θ = Rr , T (x) =

6−1x, X = Rr and κ(α) = (1/2)α⊤6−1α.
(ii) Sequential order statistics (SOSs) with known absolutely continuous baseline cumulative distribution function (cdf) F

with supp(F) = R+ := (0, ∞), form a regular r-parametric exponential family P(SOS)
:= {P (SOS)

α : α ∈ Rr
+
} (see [26,8]).

SOSs are designed to model the failure times of some (n − r + 1)-out-of-n systems, where failures affect the lifetime
distributions of remaining components. These impacts are described by the model parameters α1, . . . , αr > 0. The
natural parameter space of SOSs is given by Θ = Rr

+
, X = {x ∈ Rr

+
: F−1(0+) < x1 < · · · < xr < F−11}, the natural

statistic T (x) = (T1(x), . . . , Tr(x))⊤ is defined by

T1(x) = n ln(1 − F(x1)),

Tj(x) = (n − j + 1) ln


1 − F(xj)
1 − F(xj−1)


, 2 ≤ j ≤ r,

and

h(x) =
n!

(n − r)!

r
j=1

f (xj)
1 − F(xj)

,
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