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a b s t r a c t

In the paper, we suggest three tests on the validity of a factor model which can be
applied for both, small-dimensional and large-dimensional data. The exact and asymptotic
distributions of the resulting test statistics are derived under classical and high-
dimensional asymptotic regimes. It is shown that the critical values of the proposed tests
can be calibrated empirically by generating a sample from the inverseWishart distribution
with identity parameter matrix. The powers of the suggested tests are investigated by
means of simulations. The results of the simulation study are consistentwith the theoretical
findings and provide general recommendations about the application of each of the three
tests. Finally, the theoretical results are applied to two real data sets, which consist of
returns on stocks from the DAX index and on stocks from the S&P 500 index. Our empirical
results do not support the hypothesis that all linear dependencies between the returns can
be entirely captured by the factors considered in the paper.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Factor models are widely spread in different fields of science, especially, in economics and finance where this type of
models have been increasing in popularity recently. They are often used in forecasting mean and variance (see, e.g., Stock
and Watson, [80,81], Marcellino et al. [63], Artis et al. [6], Boivin and Ng [25], Anderson and Vahid [5] and the references
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therein), in macroeconomic analysis (see, Bernanke and Boivin [18], Favero et al. [46], Giannone et al. [48]), in portfolio
theory (see, Ross [72,73], Engle and Watson [38], Chamberlain [31], Chamberlain and Rothschild [32], Diebold and Nerlove
[36], Fama and French [40,41], Aguilar andWest [3], Bai [7], Ledoit andWolf [59]). Factor models are also popular in physics,
psychology, biology (e.g., Rubin and Thayer [74], Carvalho et al. [29]) as well as in multiple testing theory (e.g., Friguet et al.
[47], Dickhaus [35], Fan et al. [43]).

Another stream of research related to factor models deals with the estimation of high-dimensional covariance and
precision matrices. This approach is motivated by a rapid development of high-dimensional factor models during the last
years [10,11,9,8]. Fan et al. [42], Fan et al. [45], Fan et al. [44] among others have suggested severalmethods for estimating the
covariance and precision matrices based on factor models in high dimensions and applied their results to portfolio theory,
whereas Ledoit and Wolf [59] have proposed to combine the sample covariance matrix with the single-factor model based
estimator in order to improve the estimate of the covariance matrix. Here, they use the capital asset pricing model (CAPM)
as a single-factor model. Ross [72,73] argues that the empirical success of the CAPM can be explained by the validity of the
following three assumptions: (i) there are many assets; (ii) the market permits no arbitrage opportunity; (iii) asset returns
have a factor structure with a small number of factors. He also presents a heuristic argument that if an infinite number of
assets are present on the market, then it is possible to construct sufficiently many riskless portfolios. In Chamberlain [31],
conditions are derived under which this heuristic argument of Ross is justified. Furthermore, Chamberlain and Rothschild
[32] suggest the so-called approximate K -factor structuremodel where the number of assets is assumed to be infinite, while
Fan et al. [42] and Li et al. [60] extend this model by considering an asymptotically infinite number of known and unknown
factors, respectively.

Let Xit be the observation data for the ith cross-section unit at time t . For instance, in the case of portfolio theory, Xit
represents the return of the ith asset at time t . Let Xt = (X1t , . . . , Xpt)

⊤ be the observation vector at time t and let ft be a
K -dimensional vector of common observable factors at time t . Then the factor model in vector form is expressed as

Xt = Bft + ut (1)

where B is the matrix of factor loadings and ut , t = 1, . . . , T , are independent errors with covariance matrix 6u. It is also
assumed that ft are independent in time as well as independent of ut . The estimation of the factor model or the covariance
matrix resulting from the factormodel with observable factors is considered by Fan et al. [42], whereas Bai [7], Bai and Li [9],
Fan et al. [44] present the results under the assumption that the factors are unobservable. Moreover, Bai and Ng [10], Hallin
and Liška [53], Kapetanios [58], Onatski [68], Ahn and Horenstein [4] among others deal with the problem of determining
the number of factors K used in (1). Note that not in all models the factors are observable. For example, this is not the case in
many applications in psychology or in multiple testing theory, and, consequently, the results derived in the present paper
cannot be directly applied. On the other hand, factor models with observable variables are usually considered in economics
and finance where we also provide two empirical illustrations of the obtained theoretical results.

Under the generic assumption that 6u is a diagonal matrix, the dependence between the elements of Xt is fully
determined by the factors ft . This means that the precision matrix of Yt = (X⊤

t , f⊤t )⊤ has the following structure

� = {cov(Yt)}
−1

=


�11 �12
�21 �22


, (2)

where �21 = �⊤

12 is a p × K matrix and �11 is a diagonal p × p matrix, if the factor model (1) is true, i.e., if all linear
dependencies among the components of Xt are fully captured by the factor vector ft . As a result, the test on the validity of
the factor model (1) is equivalent to testing

H0 : �11 = diag(ω11, . . . , ωpp) versus H1 : �11 ≠ diag(ω11, . . . , ωpp) (3)

for some positive constants ω11, . . . , ωpp.
We contribute to the existing literature on factor models by deriving exact and asymptotic tests on the validity of the

factor model which are based on testing (3). Furthermore, the distributions of the suggested test statistics are obtained
under both hypotheses and also they are analyzed in detail when the dimension of the factor model tends to infinity as the
sample size increases such that p/(T − K) −→ c ∈ (0, 1]. This asymptotic regime is known in the statistical literature as
double asymptotic regime or high-dimensional asymptotics.

Alternatively to the test (3), one can apply the classical goodness-of-fit test which is based on the estimated residuals
given by

ût = Xt −Bft ,
whereB is an estimate of the factor loading matrix. This approach, however, does not always lead to reliable results. To see
this, let X = (X1, . . . ,XT ), F = (f1, . . . , fT ), andU = (û1, . . . , ûT ). If B is estimated by applying the least square method,
i.e.,B = XF⊤(FF⊤)−1, thenU = X −BF = X(IT − F⊤(FF⊤)−1F),

where IT is the T -dimensional identitymatrix. Under the assumption of normality it holds thatU|F ∼ Np,n(0, 6u⊗ In) (p×n
dimensional matrix variate normal distribution with zero mean matrix and covariance matrix 6u ⊗ In) and, consequently,
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