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a b s t r a c t

Consistency of kernel canonical correlation analysis (kernel CCA) has been established
while its optimal convergence rate remains unknown. In this paper we derive rigorous
upper and lower bounds for the convergence rate of the weight functions in kernel CCA.
In particular the optimal convergence rate is shown to only depend on the rate of decay of
the eigenvalues of the covariance operators.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Canonical correlation analysis (CCA), introduced by Harold Hotelling [10], is a popular statistical tool in multivariate
analysis. In the population, given two sets of random variables x = (x1, . . . , xp)⊤ and y = (y1, . . . , yq)⊤, CCAwill find linear
combinations of components of x and y that have the maximum possible correlation coefficient. Specifically, CCA solves the
problem

(a, b) = argmax
Var(a⊤x)=Var(b⊤y)=1

Cov(a⊤x, b⊤y).

Due to the normalization constraints, the maximum is just the maximal correlation coefficient. Given that recently data
are increasingly collected in a high dimensional space, CCA has found renewed interest and applications in various fields
(Hardoon and Shawe-Taylor [8], Krafty and Hall [12]).

However, this classical CCA, including its regularized modifications that take into account the high dimensional nature
of the variables, is somewhat limited by its linearity which also inherits from the fact that correlation only measures linear
dependency. To address this problem, kernel CCA was proposed (Akaho [1], Melzer et al. [14], Bach and Jordan [2]) that
uses the popular ‘‘kernel trick’’(Scholkopf [15]) and maps the original low-dimensional input space where x and y reside to
a high-dimensional (typically even infinite-dimensional) feature space. If the linear CCA is performed in the feature space,
when mapped back to the input space, we effectively have a nonlinear method. In particular, kernel CCA is able to find
nonlinear mappings f (x) and g(y)with maximal possible correlation.

Mathematically, the ‘‘kernel trick’’ can be formalized by using the concept of reproducing kernel Hilbert space (RKHS).
Following Wahba [17], an RKHS is a Hilbert space H consisting of mappings on, say, {x : x ∈ X} with inner product ⟨.⟩H
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where the point evaluation mapping f ∈ H → f (x) is bounded for any x. By the Riesz representation theorem, there exists
an element K(., x) ∈ H with ⟨K(., x), f ⟩ = f (x). It can be shown that K(x, y) = ⟨K(., x), K(., y)⟩H is a positive definite
mapping and H is the closure of mappings of the form

M
m=1 amK(., xm). In kernel CCA, we will find mappings f ∈ Hx and

g ∈ Hy where Hx and Hy are two RKHSs.
Consistency of kernel CCA has been considered in Balakrishnan et al. [3]. Fukumizu et al. [6] rigorously proved the

statistical consistency of weight functions based on i.i.d. data (xi, yi), i = 1, . . . , n. The main objective of this paper is to
consider the much more challenging problem of convergence rate of kernel CCA, for which we need specific assumptions
on the rate of decay of the eigenvalues of the covariance operator, which we will introduce in the next section. Even though
this assumption is hard to verify in practice, it is still of significant interest to give an estimation performance benchmark
for this popular estimation method. In nonparametric statistics, one always assumes certain smoothness of the function to
be estimated to get nontrivial convergence rate, which is also hard to verify. Our theoretical study reveals that performance
of kernel CCA depends on decay of eigenvalues of the covariance operators, which is roughly speaking a ‘‘smoothness’’
parameter analogous to nonparametric regression. If the smoothness parameters αX and αY (defined later) become larger,
the optimal regularization parameters ϵX and ϵY (defined later) become smaller, and the convergence rate is faster. The
method of proof can also be of independent interest which can hopefully help to establish convergence rates for other
kernel methods. We also provide a matching lower bound showing the upper bound cannot be improved in some sense,
which uses a novel construction of suitable models.

The rest of the paper is organized as follows. In Section 2, we first clarify existence issues for kernel CCA which was not
stated in Fukumizu et al. [6]. The following two sections established the upper bound and the lower bound respectively. In
Section 5, we conclude the paper with a discussion.

2. Kernel CCA in the population

In this sectionwe set up the background, introduce notations and clarify the existence of themaximizing pair of nonlinear
mappings (weight functions) f and g .

We assume (X,BX) and (Y,BY) are measurable spaces and (x, y) are random elements taking values on X × Y with
joint distribution PXY . LetHx andHy be RKHSswith kernels K1 and K2 respectively with ExK1(x, x) < ∞ and EyK2(y, y) < ∞

where the subscript denotes the random variable over which we take the expectation. This assumption will ensure that the
covariance operators introduced below are trace-class operators.

Define the two covariance operators by ⟨f ,ΣX f ⟩Hx = Var{f (x)},∀f ∈ Hx and ⟨g,ΣY g⟩Hy = Var{g(y)},∀g ∈ Hy. Since
Var{f (x)} = E⟨f , K1(., x)− ExK1(., x)⟩2Hx

≤ ∥f ∥2
Hx

{ExK1(x, x)−∥ExK1(., x)∥2
Hx

} < ∞, covariance operators are well-defined
bounded operators. In fact we can writeΣX = Ex[{K1(., x)− ExK1(., x)} ⊗ {K1(., x)− ExK1(., x)}] andΣY = Ey[{K2(., y)−

EyK2(., y)} ⊗ {K2(., y) − EyK2(., y)}] where for f1, f2 ∈ Hx, f1 ⊗ f2 is the operator such that (f1 ⊗ f2)h = ⟨f2, h⟩Hx f1, for
example. Since ExK1(x, x) < ∞, we have tr(ΣX ) = Ex⟨K1(., x) − ExK1(., x), K1(., x) − ExK1(., x)⟩Hx < ∞ and thus ΣX and
ΣY are trace-class operators and in particular are Hilbert–Schmidt operators. Furthermore, we define the cross-covariance
operatorsΣXY = Σ⊤

YX = Ex,y[{K1(., x)− ExK1(., x)}⊗ {K2(., y)− EyK2(., y)}] where ()⊤ denotes the adjoint operator. By the
reproducing property, we can easily see ⟨f ,ΣXY g⟩Hx = Cov{f (x), g(y)}.

Since constants are irrelevant we only speak of mappings modulo constants. That is we regard f and f + c , c ∈ R to be
the same mapping and f ∈ A for a set A means that there exists some constant c such that f + c ∈ A. Since Var{f (x)} = 0
when f is a constant, this also has the technical convenience that now the null space of the covariance operator is {0}. Also
due to this reason, we do not explicitly subtract themeans for various mappings in themathematical expressions in the rest
of the paper.

SinceΣX is a self-adjoint Hilbert–Schmidt operator, by spectral theorem we can write

ΣX =

∞
j=1

λjφj ⊗ φj,

where λ1 ≥ λ2 ≥ · · · > 0 are the eigenvalues and φj are the eigenfunctions with ⟨φj, φk⟩Hx = δjk (δjk = 1 if j = k and 0
otherwise). Since {φj} is an orthonormal basis in Hx, we can write

K1(., x) =


j

⟨K1(., x), φj⟩Hxφj =:


j

φj(x)φj,

and we have Exφj(x)φk(x) = Cov(φj(x), φk(x)) = ⟨φj,ΣXφk⟩Hx = λkδjk. Similarly, we can write ΣY =


∞

j=1 µjψj ⊗ ψj,
K2(., y) =


j ψj(y)ψj with Eyψj(y)ψk(y) = µkδjk.

In the population, kernel CCA solves the problem

ρ = sup
Var(f (x))=Var(g(y))=1

Cov{f (x), g(y)}

= sup
⟨f ,ΣX f ⟩Hx=⟨g,ΣY g⟩Hy=1

⟨f ,ΣXY g⟩Hx . (1)
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