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a b s t r a c t

Max-stable processes are widely used to model spatial extremes. These processes exhibit
asymptotic dependence meaning that the large values of the process can occur simulta-
neously over space. Recently, inverted max-stable processes have been proposed as an
important new class for spatial extremes which are in the domain of attraction of a spa-
tially independent max-stable process but instead they cover the broad class of asymp-
totic independence. To study the extreme values of such processes we use the conditioned
approach to multivariate extremes that characterises the limiting distribution of appropri-
ately normalised random vectors given that at least one of their components is large. The
current statistical methods for the conditioned approach are based on a canonical para-
metric family of location and scale norming functions. We study broad classes of inverted
max-stable processes containing processes linked to thewidely studiedmax-stablemodels
of Brown–Resnick and extremal-t , and identify conditions for the normalisations to either
belong to the canonical family or not. Despite such differences at an asymptotic level, we
show that at practical levels, the canonicalmodel can approximatewell the true conditional
distributions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Extreme environmental events, such as hurricanes, heatwaves, flooding and droughts, can cause havoc to the people
affected and typically result in large financial losses. The impact of this type of event is often exacerbated by the event
being severe over a large spatial region. The statistical modelling of spatial extremes is a rapidly evolving area [6] and is
crucial to understanding, visualising and predicting the extremes of stochastic processes. The approach that is currently
most used for modelling spatial extreme values assumes the environmental process is a max-stable process [8]. The most
widely used max-stable processes are the Brown–Resnick [2,18,15], and extremal-t [26,27] processes. These include the
Smith process [34] and extremal Gaussian process [33] as special cases.

Max-stable processes are the only non-trivial limits of point-wise normalised maxima of independent and identically
distributed realisations of stochastic processes. When max-stable processes are observed at a finite number of locations
their joint distribution is a multivariate extreme value distribution, which is underpinned by the assumption of the original
variables satisfying the dependence structure conditions of multivariate regular variation [30]. Max-stable processes have
marginal generalised extreme value distributions [3] and a complex non-negative dependence structure which has a
restricted form. To understand this restriction, let {XM(s), s ∈ R2

} be a spatial max-stable process with continuousmarginal
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distribution functions Fs and corresponding inverse denoted by F←s . Then, if for any s1, s2 ∈ R2 where XM(s1) and XM(s2) are
not independent, it follows that the dependence coefficient

χ = lim
p→1

Pr

XM(s2) > F←s2 (p) | XM(s1) > F←s1 (p)


,

is positive. This property is termed asymptotic dependence, and it implies that the largest marginal values at different
locations can occur simultaneously. Furthermore, if we denote the joint distribution function of {XM(s1), XM(s2)} by Fs1,s2
then

Fs1,s2{F
←

s1 (p), F
←

s2 (p)} = pθ(s1,s2)

for all 0 < p ≤ 1 where 1 ≤ θ(s1, s2) ≤ 2, so for max-stable processes this implies that the spatial dependence properties,
measured by θ are independent of the severity of the event, measured by p [6].

Wadsworth and Tawn [38] introduced the class of inverted max-stable processes and these are used in Davison et al. [5]
and Thibaud et al. [37]. Any inverted max-stable process {X(s), s ∈ R2

} with unit exponential margins, i.e., for all s ∈ R2

and x > 0, Pr(X(s) < x) = 1− exp(−x), can be represented by

X(s) = 1/XF (s) s ∈ R2,

where {XF (s), s ∈ R2
} is a max-stable process with unit Fréchet margins, i.e., for all s ∈ R2 and x > 0, Pr(XF (s) < x) =

exp(−1/x). Thus, for all s1, s2 ∈ R2, the dependence structure between large X(s1) and X(s2) is equivalent to the dependence
structure between small XF (s1) and XF (s2) and hence differs from themax-stable form. As all max-stable processes are non-
negatively associated, so are all inverted max-stable processes. Furthermore, for all s1, s2 ∈ R2, with s1 ≠ s2, for x > 0

Pr {X(s1) > x, X(s2) > x} = exp{−x/η(s1, s2)} = {Pr(X > x)}1/η(s1,s2),

where η := η(s1, s2) ∈ [1/2, 1) is the coefficient of tail dependence [23]. It follows that in general margins the inverted
max-stable distribution is

Fs1,s2{F
←

s1 (p), F
←

s2 (p)} = 1− 2(1− p)+ (1− p)1/η ∼ p2−(1−p)
−1+1/η

as p ↑ 1,

so unlike for the max-stable distribution the spatial dependence, measured by 2 − (1 − p)−1+1/η , is not independent
of the severity p. In fact, all non-perfectly dependent inverted max-stable processes are in the domain of attraction of
spatially independent max-stable processes, meaning that their point-wise normalised maxima are independent, i.e., for
all s1, s2 ∈ R2, with s1 ≠ s2,

lim
n→∞

Pr


max
i=1,...,n

Xi(s1)− ln n < x1, max
i=1,...,n

Xi(s2)− ln n < x2


=

2
i=1

exp{− exp(−xi)}, (1)

for any x1, x2 ∈ R, where {Xi(s), s ∈ R2
}, for i = 1, . . . , n denotes a sequence of independent and identically distributed

inverted max-stable processes with unit exponential margins.
To reveal the extremal dependence structure for asymptotically independent random variables, alternative asymptotic

properties have been studied. Ledford and Tawn [22,23], Resnick [31] andWadsworth and Tawn [39] explore how the joint
survivor decays as both arguments tend to the upper end point. A weakness with this approach is that it fails to describe the
behaviour of the X(s2) values that occur with the largest values of X(s1). Instead a conditioned approach is required which
looks at a more subtle normalisation for X(s2) that focuses on the region of the joint distribution which is most likely when
conditioning on variable X(s1) being large. This is the approach we take in this paper.

For a bivariate random variable (X, Y )with unit exponential margins and general dependence structure, the conditioned
extremes limit theory of Heffernan and Tawn [13] and Heffernan and Resnick [12] is equivalent to the assumption that there
exist location and scaling norming functions a : R+ → R and b : R+ → R+, such that, for any x > 0 and z ∈ R,

lim
u→∞

Pr {X − u > x, {Y − a(X)}/b(X) < z | X > u} = exp(−x)G(z), (2)

where G is a non-degenerate distribution function. To ensure a, b and G are uniquely defined the condition limz→∞ G(z) = 1
is required, so G places no mass at+∞ but some mass is allowed at−∞.

The key development in this paper is deriving the forms of a, b and G in representation (2) for the broad class of inverted
max-stable processes. For positively dependent random variables, Heffernan and Tawn [13] found that, for all the standard
copula models studied by Joe [17] and Nelsen [25], the norming functions a(x) and b(x), fell into the simple canonical
parametric family

a(x) = αx and b(x) = xβ , (3)

where α ∈ [0, 1] and β ∈ (−∞, 1) with Keef et al. [19] identifying additional joint constraints. The case α = 1 and β = 0
corresponds to χ > 0, whereas any other combination of α and β gives χ = 0. The statistical use of the canonical family (3)
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